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FOREWORD

This report presents the results of NASA Grant NAG 3-708, "A Comparative Study of

Electric Power Distribution Systems for Spacecraft," for the period of June 19, 1989 to

December 31, 1989. This research was performed by the University of Toledo for the NASA

Lewis Research Center.
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I. INTRODUCTION

This comparative study of electric power distribution systems for spacecraft

concentrates on two interrelated issues: (1) the choice between dc and high-frequency ac, and

(2) the converter/inverter topology to be used at the power source. The report opens first

with a discussion of the relative merits of dc and ac distribution. Then, specific converter and

inverter topologies are identified and analyzed in detail for the purpose of detailed comparison.

Finally, specific topologies are recommended for use in dc and ac systems.
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II. AC vs. DC Distribution

Because of increasing electric power requirements for future spacecraft, it is becoming

increasingly evident that alternatives to traditional 28 Vdc and 400 Hz ac distribution should be

considered. Obvious reasons for this include the high cable weight of 28 Vdc and the high

transformer and filter weights of 400 Hz. Two proposals that have received considerable

attention are to simply use a higher dc voltage, such as 270 Vdc [16,17], or use a higher ac

frequency, such as 20 kHz [1,2,6-15,18]. Both approaches have their pros and cons, but

considerable debate has arisen as to what the relative merits are. As an example, it is

sometimes argued that a 20 kHz system has the advantages of high efficiency and low weight,

implying that high voltage dc does not enjoy these characteristics. Such a conclusion is

incorrect since high efficiency is basically achieved by raising the voltage, and low weight is

achieved by raising the voltage and the switching frequency. Thus 400 Hz will indeed be heavier

than 20 kHz, but it should be capable of at least the same efficiency at the same voltage level.

Likewise, a dc system should be capable of about the same efficiency as either 20 kHz or 400 Hz

at the same voltage. Since dc/dc converters can switch at frequencies well above 20 kHz, dc may

be capable of power/weight ratios that are actually higher than those for 20 kHz ac.

In light of the wide variety of possible systems and topologies, there is a need to collect

the pertinent information and present it in a comparative format. This present study compares

some of the more important characteristics of dc and higher-frequency ac and presents several

different ways of implementation. For example, at least three methods have been proposed for

implementating 20 kHz [2,6,18], and numerous converter topologies can be used to implement

DC.



n

Power Levels and Types of Sources

Because of the broad range of power levels and variety of proposed sources, it is unlikely

that any one distribution system will be optimum for all possibilities. To provide a basis of

comparison, this study will assume a load in the range of 100 kW, since this power level is one

that has been proposed for future applications. To provide a frame of reference for the voltage,

it will be assumed that distribution voltages will be in the range of 400-500 volts. This should

allow reasonable cable sizes with currents in the 200-250 amp range. This voltage also allows

the use of conventional converter designs using readily available semiconductors.

Regardless of the form of generation, all of the proposed high voltage dc and 20 kHz

systems require input power from a dc source. For power levels in the range of 100 kW, the

energy source will probably be a nuclear reactor. A few possibilities for deriving a dc voltage

from the heat of the reactor are listed below:

1. Thermionic converter

2. Thermoelectric converter

3. Engine-driven alternator with rectification

The thermionic and thermoelectric converters are characterized by low voltage outputs in the

100 Vdc range, which is usually too low for distribution. Rectified alternators can operate at

high voltages, however, and should not require any voltage boost.

Presumably, both high voltage dc and 20 kHz systems will be derived from some type of

bridge converter with an output transformer. Therefore, either type should be able to work

from a low or high voltage source, but there are at least two cases that tend to favor either DC or

a two-stage AC system with a DC link. One case would be where the reactor is at a remote

location from the spacecraft. If a low voltage source such as a thermoelectric is also used, there

is some advantage in locating the electronic converter near the reactor to reduce the weight of

the transmission cable to the spacecraft. DC transmission allows a simplified cable for this link

and this tends to favor a dc system or a two stage ac system which uses adc link. Another case



that might favordc is the rectifiedalternator. If the alternatorvoltageis high enoughand can

be regulated,it maybe possibleto eliminatethe sourceconverter.

Hi oh Volta oe DC

A simple block diagram of a dc distribution system is shown in Fig. 2.1. This system

offers certain advantages, some of which would be low EMI, simple cables, and the possible use

of relatively simple magnetic blowout circuit breakers [3]. The most obvious drawback of dc

compared to ac is that a converter is required for voltage scaling at the loads instead of a

transformer. This factor becomes especially important at high distribution voltages or where

there are several unregulated loads that require different voltages. If the power level is high

enough, electro-mechanical circuit breakers may become a problem, but according to [3], this

limitation is actually more serious for 20 kHz systems.

As with any system, it is absolutely necessary to use fault-tolerant converters. This

term implies a converter that can operate in a current limit mode without damage if a short

circuit occurs. A converter of this type will limit the current that must be interrupted by a DC

breaker, and it can even be turned off momentarily to allow the breaker to open at no load

(sometimes called "blinking'). Incidentally, while blinking can be used to decrease the stress

on circuit breakers, it seems risky to totally depend on this, meaning all breakers should be

capable of interrupting the maximum output current of the converter. One possibility is the

standard series resonant (Schwarz) converter, which performs very well under short circuit

conditions [2,12]. These converters could be used both to increase the source voltage for the

distribution network and then to decrease it at the loads. Forced-commutated designs also should

be considered, however, since they provide constant frequency operation as opposed to the

variable frequency of most resonant converters. This feature reduces the size of the power

transformer and may lower the EMI frequency range.

4
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Since many of these converters must use a transformer at fairly high power levels, it

seems best to concentrate on topologies that are immune from the current transients that can

occur due to transformer flux imbalance. Some possibilities are listed below:

1. PWM bridge converter with a series blocking capacitor. One example of this is the

PWM converter in Fig. 2.2. One obvious disadvantage to this approach is the rather

large size of this capacitor at high power levels.

2. Schwarz or series resonant converter in Fig. 2.3. This circuit has been used in

numerous high power applications, but it does require variable frequency operation

to achieve natural commutation. This increases the size of the output transformer

and widens the EMI frequency range. This circuit can be operated in a PWM mode at

fixed frequency, but this also means forced commutation. It is questionable whether

this forced mode has any true advantage over other PWM methods such as current

mode control.

3. Push-pull current fed converters such as that in Fig. 2.4. This circuit was studied

extensively in [14], and it enjoys the advantages of buck-boost operation and

relatively simple control. The switching losses are relatively high however,

especially because of the energy stored in the leakage inductances. Transistor

voltages will also be quite high, making this circuit difficult to implement for high

input voltages.

4. Current mode control (CMC) converter in Fig. 2.5. If properly designed, this

converter would probably have a smaller volume than any of the others. Experience

indicates that its controller is very sensitive to EMI problems however, and the

technical literature contains very little information about high power applications of

CMC.

Hiah Frequency AC

Fig. 2.6 shows a simplified block diagram for a 20 kHz distribution system. At least

three different methods of generating the 20 kHz waveform have been proposed [2,6,18], but
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all of these use a resonant circuit in the output stage. This is done to produce either a sinusoidal

voltage or current at the output.

The main advantage of 20 kHz is the obvious one, namely simple voltage scaling with

low- weight transformers. Two important consequences of this are the relatively simple

converters that can be used for regulated loads, and the absence of converters for unregulated

loads. However, EMI will probably be more of a problem than with dc because of the 20 kHz

power on the distribution cables. Special low inductance, high capacitance cables must be used

to reduce series voltage drop.

There are also indications that fault protection for a 20 kHz system will be more difficult

than a dc system. While it is true that the zero current crossing of low frequency ac helps to

extinguish the arc in an electro-mechanical breaker, the same cannot be said at 20 kHz. This is

because the electric field strength recovery at 20 kHz is faster than the dielectric strength

recovery, meaning that the current does not remain at a low value for a long enough time to

allow the arc to extinguish [3]. This same reference also states that 20 kHz may require the

use of more complex vacuum circuit breakers.

As with a dc system, the converters themselves must be fault tolerant, and they should be

capable of withstanding a short circuit directly at their outputs. Again, this limits the

necessary current ratings for the circuit breakers as well as protecting the converter.

Blinking the source to allow the breakers to open at no load is still possible, but breaker ratings

should not depend on this.

Only the source converters for generating the 20 kHz waveform will be considered here,

since very standard converters can be used at the loads. Some possibilities are:

1. Phase-controlled, parallel-loaded resonant converter with the block diagram

shown in Fig. 2.7. Of the various alternatives, this one has probably received the most

attention, and a system of this type using two Mapham inverters (Fig. 2.8) has been proposed

for driving 20 kHz distribution networks [6,7]. The two converters produce two sinusoidal

output voltages that are added by the series transformer connection. Regulation is achieved by

11
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variation of the phase shift between the two, and Csl and Cs2 are added to help provide load

regulation and short circuit protection. A similar implementation using two parallel-loaded

half-bridge converters is given in [5]. Systems of this type can produce a low-distortion

sinusoidal output voltage, but this is achieved by maintaining a current in Co that may be as

much as four times greater than the full load current. Mapham's original paper [4] illustrates

this point with a design example for a 1KW half bridge circuit:

Vo =1 18 V rms, Iload = 8.5 Arms, Co = 4.7 I.tF.

operating frequency fo = 10 kHz, resonant frequency fr = 13.5 KHz. This indicates a capacitor

current, Ic , of

Ic = 118 (2 _ fo Co) = 34.85 Arms.

therefore, I c = (4.1)1 load

As pointed out in [5], systems similar to Fig. 2.7 suffer another disadvantage in that the

maximum current of one of the two converters occurs at an intermediate load instead of full

load. Reference [5] includes data for a half-bridge, phase-controlled, parallel-loaded

converter that indicates that the maximum transistor current in one of the two converters does

not occur at full load. The maximum value for this current is actually about 1.75 times the full

load value, which indicates that the current ratings for the transistors in one converter must

be even higher than those indicated by the previous example. In regard to short circuit

protection, experience with a similar circuit [14] indicates that achievement of this

characteristic may require the use of forced commutation during the fault.

2. Cascaded Schwarz or series-loaded resonant converter/inverter with the schematic

shown in Fig. 2.9 [1,2,8,9,11-14] and waveforms in Fig. 2.10. The development of this

circuit is partially motivated by the special requirements for power systems supplied by

nuclear reactors. The block diagram of a typical system is shown in Fig. 2.11. As noted

earlier, these systems are expected to operate at power levels in excess of 100 kW and at rather

low dc source voltages, e.g., 100 Vdc. This particular system uses a thermoelectric converter

to transform heat from the nuclear reactor to electric energy. To reduce the amount of radiation

13
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shielding and thus weight, the nuclear reactor and thermoelectric converter will be located on

an extension arm away from the spacecraft. Since the typical source current may exceed 1000

Adc, it is also adviseable to place an electronic converter near the reactor to increase the voltage

and thus decrease cable weight.

For the example system in Fig. 2.11, power is transported down the extension arm at

about 450 Vdc using a relatively simple dc transmission cable. AC distribution is derived from

a second converter operating at a fixed frequency of 20 kHz and located at the spacecraft.

Regulation of the 20 kHz bus voltage, v02 , is achieved by variation of the DC bus voltage,

Vol =Vs2.

The main advantages of this circuit are its relative simplicity and the inherent fault

tolerance of each stage. Actually, the system does not require a Schwarz converter for the first

stage, and any fault tolerant, controllable voltage source will suffice. One alternative converter

that uses PWM to avoid the temperature limitations of the polypropolene resonant capacitor is

analyzed in [14]. A three phase version is also possible, and a system of this type was studied

in [8,9]. Three phase systems should reduce filtering requirements for rectified loads, but

they do not appear to produce any significant savings in conductor weight. They also do not

provide any special advantages for ac motors since these machines require power at a lower

frequency.

This system produces a square wave output voltage which becomes trapezoidal as the

cable capacitance increases. As shown in [2,12], the current tends to be sinusoidal, even with a

rectified load. The other proposed systems produce a sinusoidal voltage, but with rectified

loads, their current waveforms will approach a square wave.

This seems to be an important difference until it is noted that none of the anticipated

loads appears to be sensitive to waveshape. Heating and lighting can use the 20 kHz directly,

regardless of waveform, and all dc power supplies will be rectified and filtered. AC motors

cannot use 20 kHz directly, so they too are insensitive to its waveshape. Thus it makes little

difference whether the waveform is a sine wave, a square wave, or a trapezoid.

17



3. DC-inductor resonant inverter shown in Fig. 2.12. This system has been

proposed for spacecraft power systems by TRW, Inc. [15,18]. It features a sinusoidal output

voltage, appears to be relatively simple, and the above references indicate that its output is

short circuit tolerant. Transistors Q3 and Q4 must be force commutated (PWM), whereas the

two previous systems use natural commutation throughout. However, with the faster switching

devices now becoming available, forced commutation may not be a significant drawback at 20

kHz, and an efficiency of 90% above 6 kW has been reported [18].

The circuit operates in the following manner. During the first half cycle, Q1 and Q3 are

switched on with Q2 and Q4 off, and energy is supplied to the LC tank. Regulation is achieved by

turning Q3 off at the appropriate time (PWM), causing D1 to conduct. Q1 remains on for the

entire half cycle to allow the completion of this first half of the sinusoidal output voltage. The

next half cycle is the same with Q2 and Q4 on while Q1 and Q3 are off.

One area of concern is an instability at light loads which was reported in [18]. This

problem may have since been corrected, but the stability issue should be clarified and properly

analyzed.

Summary

In making the choice between a dc and an ac system, there are certain basic

considerations which provide some guidance. As the power level increases, the voltage must also

increase to restrain cable weight. However, as the voltage increases it ultimately reaches a

level that is inconvenient to the user. This means the voltage must be scaled back down at the

loads to reach a level that is compatible with the switching devices in the load converters. AC

now has an important advantage because of its simple scaling with transformers.

However, ac also introduces such complications as more complex source converters,

special cables, higher EMI, and probably more complex circuit breakers. This implies that dc

is advantageous until the voltage gets so high that it becomes difficult to find converter

components.

18
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The remaining question is: At what voltage does this transition occur? Since the level is

constantly increasing, it is difficult to place a maximum value on this voltage, but 1000 volt,

35 amp (@ Tc = 90 ° C) IGTs are presently available [19]. This indicates that high power

converters switching at 20 kHz and using input voltages of 500 Vdc are within the range of

present technology. It also seems quite likely that this level will increase as new devices such

as the MCT become available.
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III. ANALYSISOF NON-RESONANT TOPOLOGIES

INTRODUCTION

The analyses of the non-resonant dc-dc converter topologies will be undertaken to

produce the information needed to compare the alternatives in the following areas:

1 ) Device utilization (voltage and current ratings relative to power

processed).

2 ) Conduction losses.

3 ) Switching losses.

4 ) Ratings of transformers and reactive components.

It is expected that this comparison will aid in selecting the best topology for a given

application.

The switch ratings and conduction losses will be calculated based on idealized operation.

There are two categories of devices to be considered here: Ohmic devices, for which the voltage

drop is modeled as being proportional to current, and constant-voltage-drop devices, for which

the voltage drop is modeled as being independent of current. The first category includes

MOSFETs, for which the following on-resistance (RDs) model will be used:

v2.s
RDS = K DS, (3.1)

where K is proportional to the die area and VDS is the rated drain-source breakdown voltage.

The constant-voltage-drop model will be used for diodes, BJTs, IGTs, and thyristors. The

device voltage drop is approximated by its average value, perhaps 1 volt for diodes and BJTs, or

2 volts for thyristors.

Switching losses are somewhat elusive to quantify for several reasons. First, they are

very dependent on the type of switch being used and its drive circuitry. Switching losses are

also quite dependent on the size and type of snubber used. Generally it is found that increasing

snubber size results in decreasing switching losses, but increasing snubber losses. There is an

optimum-sized snubber which results in minimum overall losses [20]. However, the

21



optimum switchingand snubberlossesstill remaina functionof the voltageand currentlevels

at the switch. The varioustopologieswill thereforebe comparedin terms of the peak current

interrupted (and the clamping voltage), and the peak blocking voltage at turn-on (and the

current initially picked-up).

Transformersize and weight is a function of the maximum applied volt-second-integral

(VSI) and the rms winding current(s). It is assumed here that the same core material and peak

flux density is to be used in each switching converter under consideration. Transformers can be

usefully rated in terms of rms volts and rms amperes if sinusoidal voltage is assumed. Because

the voltages appearing in the dc-dc converters are generally not sinusoidal, and may not be

comparable in all cases, transformer size will be compared on the basis of the VSI and winding

currents.

The sizes and weights of reactive components are related to the peak stored energy. This

will be used as a basis of comparison, therefore. The reactive components will generally be

assumed large enough to ensure low-ripple operation in the analysis to follow. This greatly

simplifies the analysis. Although this assumption is questionable in terms of low-power design

practice, at high-power it is quite realistic in light of the necessity of presenting low-ripple dc

voltages and currents at the ports of the converter.

BUCK CONVERTER

The buck converter in its various forms which include a transformer is probably the

most widely-used topology at the 1-10 kW level. Three basic possibilities are illustrated in

Fig. 3.1. These three variations--the full-bridge, the half-bridge and push-pull topologies--

are presented with component values resulting in equivalent performance at the input and

output terminals. The full-bridge converter of Fig. 3.1 (a) is analyzed first and used as the

reference for comparison with the others.

22
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FglI-Bridoe Buck Converter

Two different gating waveforms are illustrated in Figs. 3.2 and 3.3. The first, referred

to as PWM, is the standard approach. The second, referred to as phase-shift gating, has been

suggested as a means of reducing switching losses [21], although it produces results similar to

those of PWM.

ds(wt)"

ds((Ot) = Ds + _n_l= nlSin (nnDs) cos ncot

With PWM the input current is can be written:

is (cot) = ds(e)t) N[o + d's (e)t-n) N_

The analysis of Fig. 3.1(a) begins with the Fourier-series representation of

(3.2)

(3.3)

0

As illustrated in Fig. 3.2, ds = ds in the PWM approach. Note that NI o is the output-side

current reflected to the transformer primary. Therefore:

i,((ot)=2DsNIo + 2NI_.__o_ nl_sin (nnDslcos (n(ot)
/I; n=l

+ 2NI.___o_ bi n (nrrDs) cos (nn)cos (no, t).
/g n=l (3.4)

The above reduces to:

i,((ot)=2DsNIo + 4NIo _ bi n (nnDs)cOs (no)t)
/£ n=2 (3.5)

for n oven.

Based on (3.5), the dominant (n=2) harmonic current supported by the bypass capacitor has an

amplitude of:

lis21= 2N-_I° in (2riDs)(A peak).
(3.6)

The dc input current is found from (3.5):

Is=2DsNIo (3.7)

It can be seen that the effective duty cycle is 2D s, twice that of any individual switch.

25



The rms value of the input current is can be found by reference to Fig. 3.2:

is(rms)=N]o_- Is
(3.8)

The rms bypass-capacitor current is therefore:

= NIol/2Ds (1-2Ds) (3.9)

In terms of a given load current Io, the rms capacitor current maximizes for Ds=0.25

and is equal to:

isc(rms - max) = NI_.___o for 2Ds = 0.5.
2 (3.10)

The amplitude of the ripple voltage appearing across C s due to its finite value is estimated

assuming that all of the ripple current flows through it, and considering only the dominant

second harmonic.
I. |

ivs2 [_=_ lis21 = Nlosin (2_D,) V peak
2o_Cs _C_ (3.11)

A more accurate estimate of the peak ripple voltage is found by integrating the ripple current

passing through Cs:

fDsT

IVSRl= 21--V,(p-p)= ° (NIo - 2DsNIo) dt

_ NIo (2Ds)(l-2Ds) (V peak).
4Csf (3.12)

The transformer design is based primarily on the volt-second integral (VSI) and the rms

winding currents. The required VSI is given by:

VSI = DsVsT _ VoT
np 2ns"

The rms current in the transformer primary is given by:

ipRi(rms) = _ NIo =

(3.13)

(3.14)
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The secondary current is scaled according to the turns-ratio.

The output-side voltage Vo(°°t) has the following series representation:
¢10

vo((ot) = 2DsNVs + 4NVs_ bi n (nxDs)cOs (not)
/¢ n=2

for n even.

From this series, the amplitude of the dominant second harmonic is seen to be:

(3.15)

Ivo2l - 2NVssin (2xDs) V peak.
/t

(3.16)

The amplitude of the ripple current in Lo is estimated based on (3.16) and the assumption that

the ripple voltage is entirely supported by Lo:

Iv021 NVssin (2xDs) A peak.
Ii021 ----2(oi_,o - xf.OLo ( 3.1 7 )

The amplitude of the ripple current can also be estimated by integrating the ripple voltage,

assuming that all of it is supported by Lo:

1 1 fDsT

lioal= 2go] ° (NVs-2D,NV,) dt

_ NVs (2Ds)(1-2Ds)
4Lof (3.18)

Ripple factors R V and R I are defined to be the amplitudes of ripple voltage or current

normalized with respect to the dc voltage or current. Using (3.12):

R,, = [VSR____[= N2Io (2Ds)2(l_2Ds)
Vs 4CsfVo ( 3.1 9 )
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Assumingthat the designproceduresetsthe transformerturns ratio

Rv = VoIo 27t (2Ds)2(l_2Ds)
to 4CsVs2(min)

which maximizes for the worst case

N- Vo
V_(min)

Rv(WC) = PDF_,S 2/_

co 27CsVs2(min) (3.2 0 )

when 2D s = 2/3.

Using (3.18)"

lioRI _ NV_ (2Ds)(1-2Ds)
RI = _o 4LofIo

_ PDES
L (l-2Ds)

co 2LoI_ (3.21)

Line regulation is assumed to be required so that it is useful to define "turn-down ratio" KTD'

K Vs(max)

TD'7"Vs(min )

If the load voltage is regulated with 2D s = 1 at Vs (min), then:

(3.22)

2Ds(min)- Vs(min) _ 1
Vs(max) KTD "

Therefore, the worst case for (3.21) is

(3.23)

(3.24)

RIC_C) = laDES 11; KTD-1
m 2Loi2o(max) KTO

Note that the worst case for Cs is found in terms of the minimum supply voltage Vs for which

full power operation is to be obtained. For Lo, the design is determined at the full-load current

Io (max). For load currents less than this, R I increases.

m
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The maximumstoredenergyfor a designbasedon (3.20)and (3.24) is calculated using:

Ecs = FsV2(max)'(1 + R_F and

ELo = _LoI_(max).(1 + RI) 2 • (3.26)

Therefore,

K (Z +R02
Ecs= co 27 Rv (3.27)

and

ELo = PDES __ KTD - 1 (1 + RI) 2
4 KTD RI (3.28)

The switch ratings are next reviewed. If a circuit layout with low parasitic inductance in

the current-commutating paths can be obtained, the blocking voltage on the switches is well-

defined at

Vsw= Vs. (3.29)

The switch current ratings are

isw(rms) = N_Cl_s = _ and
2_Ds

isw(avg) = NIo Ds= Is
2 "

(3.30)

(3.31)

Therefore, the expected conduction loss per switch, assuming ohmic switches, is:

POHM = (NIo)2DsRDs - T2 RDS
- "s 4--_s " (3.32)

The greatest loss occurs at low line, for which the design power PDES is equal to

Is(max).Vs(min).

For this worst case, (2.32) can be written:

POItM ]= 1 Is(max)
PDES ] 2 Vs(rnin) RDS (3.33)

WC

Using (3.1) produces the following worst-case result, given as the total conduction loss for

four ohmic switches:

PCOND

PDES [we 2Is(max)KKTDVl"5(max) (3.34)
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This suggeststhat the die area (or numberof paralleleddevices) for a constant normalized

conduction loss is proportional to maximum input current, but more than proportional to

voltage level. Also, (3.34) shows the penalty of supplying line regulation. For constant-

voltage-drop switches, the worst-case normalized loss per switch occurs at low line. The total

conduction loss for four constant-voltage-drop switches is:

(3.35)

PCOND [ = 2KTD VSW
PDES V (max)"

Switching losses are a function of the current interrupted, and the voltage blocked. At

turn-on, the blocking voltage and current di/dt determine the switching losses. In Fig. 2.1(a),

the blocked voltage is V s and the picked-up current is NIo with infinite di/dt at turn-on if the

transformer is ideal. Leakage inductance lowers the di/dt; a small amount is probably

beneficial. The energy trapped in the leakage inductance is returned to the source Vs through

the anti-parallel diodes at turn-off. Turn-on before this energy is completely returned will

result in picking up a circulating current less than NIo with di/dt limited only by the primary-

side layout inductance. A minimum off-time could be imposed to prevent this possibility. This

off time should exceed

toll>_NIoLep ,

Vs (3.36)

where Lep is the primary-reflected leakage inductance. The transformer magnetizing current

will also cause a circulating primary-side current when all switches are off.

This current is also likely to be picked-up with high di/dt at turn-on; however, its magnitude

will normally be a small percentage of the design full-load current and it is not expected to

cause much additional switching loss.

Turn-on while significant current is circulating on the primary side of the transformer

causes an additional difficulty due to the reverse-recovery of the antiparallel diodes. During

the recovery transient, the source Vs is essentially shorted and shoot-through current rises at

a rate limited only by the layout inductance. The diodes are characterized by a stored charge
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equal to the product of their forward current prior to commutation and their transit time. This

charge is removed through the reverse current together with internal recombination. In the

case of a rapid commutation (low layout inductance), charge removal is primarily due to the

reverse-recovery current. Fast recovery diodes, even at the expense of greater forward drop,

are helpful in reducing this loss.

The turn-off process requires interrupting a current of NI o, plus the peak ripple

current, with a clamping voltage of Vs. Any layout inductance present on the primary side traps

energy which causes voltage overshoot on the off-going switch. Snubbing generally involves a

small series inductance (including the layout inductance) which controls the turn-on losses and

peak diode recovery current, together with shunt elements to prevent voltage overshoot at

turn-off. These may be dissipative, or energy-recovering. It is generally found that snubbing

elements lower the switching losses in the switches by shifting them to the snubbers. There is

usually an optimum snubber which minimizes overall loss [20].
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Phase-Shift Gatino

Phase-shift gating has been proposed [21] as a means of lowering switching losses in the

full-bridge configuration. Typical waveforms are illustrated in Fig. 3.3, where it can be seen

that each switching pole is driven with 50-percent duty cycle, but variable phase relative to

each other. The resulting input current and output voltage waveforms are the same as those of

standard PWM, thus most of the previous design equations continue to apply. However, the

switch current illustrated in Fig. 3.3 (refer also to Fig. 3.1) shows the possibility of reduced

switching losses. If an ideal transformer were assumed, the shaded sections of isw would not be

present, and it can be seen that this switch is turning on without loss. (The gating signal ds is

present prior to current flow, which is initiated by turn-on of the diagonal switch.) The two

switches on the right-hand side of the bridge are found to suffer no turn-on losses, their

conduction being initiated by turn-on of left-hand side switches. In a similar manner, the left-

hand side switches have no turn-off loss. Ideally, the designer can then optimize the snubbers

for turn-on (left side), or for turn-off (right side).

The situation illustrated in Fig. 3.3 might not occur in practice, however. The presence

of significant leakage inductance in the transformer would permit the circulation of a current

less than NI o in the upper switches of the bridge during the shaded portion of isw in Fig. 3.3.

Only diode voltage drops act to oppose this current during this time. The turn-off of the upper

left-hand switch would interrupt this circulating current, and would therefore not be without

loss. The evaluation of the practicality of this gating approach is ongoing [22], but so far

experimental data have not produced any efficiency improvement attributable to this technique.

Phase-shift gating is clearly not applicable to the half-bridge and push-pull topologies.

Half-Bridqe Buck Converter

The half-bridge buck converter of Fig. 3.1 provides the same performance at its

terminals as the full-bridge version, so that many of the previous analytical results apply

here. The differences will be uncovered in the following analysis. The switch existence function

32



ds(cot) is given by (3.2). The input side currentsare therefore:

iSA(0_t) = ds(tat) 2NIo = 2DSNIo + 4N_______ lsi n (n_Ds)cOs (no)t)
/1; n=l (3.37)

iSB(C0t-X) = ds(C0t) 2NIo = 2DsNIo + 4NIo _ lsi n (nxDs)cos(nx)cos(no_t)
/t

n=l

(3.38)

Note that N is the turns ratio of the equivalent full-bridge transformer: the half-bridge circuit

requires a ratio of 2N. The dominant harmonic current in each of the input capacitors (2Cs) is

the fundamental and has an amplitude of:

liSA1[ - 4NIo sin (xDs) A peak
(3.39)

the dc input current is 2DsNI o as before. The effective duty cycle is again 2D S, twice that of the

individual switch. The rms value of iSA or iSB is:

isA(rms) = 2NIofl_s- Is
1/_ (3.40)

The rms bypass-capacitor current is therefore

is¢(rms) = _ D@ "Is2 = Is__sS

= 2NIo!/Ds(1-Ds)

(3.41)

In terms of a given load current Io, the rms capacitor current maximizes for DS = 0.5 and is

equal to:

isc(rms-max) = NI o for 2Ds=l.0 (3.42)

The amplitude of the ripple voltage appearing across either of the two capacitors can be

estimated by assuming that all of the ripple current passes through it. It can be seen that

fundamental-frequency ripple appears on each bypass capacitor; however, all odd-harminic

components cancel when adding the net voltage across both capacitors. Therefore, the second-

harmonic ripple voltage for both capacitors is estimated:
_ ,, lis l Nlosin (2gDs)

VS2 = '_2to(2Cs) = _ V peak
(3.43)
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For the half-bridge to have the same input voltage ripple as the full-bridge, (3.43) shows that

each of its bypass capacitors must have twice the capacitance of that of the full-bridge. The rms

current rating of each of these is twice that of the full-bridge, although each is rated at one-half

the dc voltage.

The ripple voltages appearing on each of the bypass capacitors can be found by integrating

their respective ripple currents:

vS._ = 1 (iSA - Is) dt+ IC and

VSBR = 1 (iSB - Is) dt+ IC.

(3.44)

The ripple voltage appearing at the input terminals is found by adding these two expressions:

VSR = VSAR + VSBR = _Sfo t
(iSA +isB - 2Is) dt+ IC.

(3.45)

The peak ripple is one-half the peak-to-peak ripple, and is given by:

.,L__L._ ( ID_T

VSR (peak) = 2 2CsJo (2NIo - 4DsNIo) dt
(3.46)

This is seen to be the same as (3.12) for the full-bridge; therefore, the capacitor sizing and

ripple voltage calculations of (3.19 - 3.20) apply to the half-bridge also. The total stored

energy in both capacitors, when chosen according to (3.20), is

Ecs= 2[ 1 (2Cs)(1Vs(max))2(1 + Rv) 2]

=_ C_V_(max).(1 + R_)2

Thus, ECS is also given by (3.27).

(3.47)

The half-bridge converter behaves the same as the full-bridge on its secondary side,

therefore all results pertaining to the secondary side of the full-bridge continue to apply.
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The switchvoltageratingscontinueto be the sameas thoseof the full-bridgecircuit. The

current ratingsare doubled,however.
isw(rms) = 2NIoll/_s = Is

_s's and (3.48)

isw(avg) = 2NIoDs = Is. ( 3.4 9 )

Ohmic switches would therefore need to have one-half the resistance of those of the full-bridge

converter to maintain the same total conduction loss. Constant-voltage switches would need to

have doubled current ratings for the half-bridge circuit. The expected per-switch conduction

loss for the half-bridge circuit would be:

POHM = 4(NIo)2DsRDs = I2 RDS
Ds (3.50)

if ohmic switches were used, and

Pcv = 2N]-oDsVsw = Is Vsw ( 3.51 )

if constant-voltage switches were used. Half-bridge and full-bridge topologies have the same

total conduction loss for a given number of devices, provided paralleling with perfect current

sharing is possible.

Switching losses related to commutation voltage will be similar to those of the full-

bridge. However, the doubled primary-side peak current will cause increased sensitivity to

layout inductance and current-related switching losses will be higher. They will only occur at

two switches instead of four, however. A minimum off-time which will permit recovery of the

energy trapped in the transformer leakage inductance is given by

tOFF > 4NIoLep,
Vs (3.52)

where Lep is the primary-reflected leakage inductance. Because there are half as many

primary turns for the half-bridge topology as that of the full-bridge, it is reasonable to assume

that one-fourth the Lep could be achieved in the half-bridge transformer, thus permitting the

same off-time as that of the full-bridge.
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Push-Pull Buck Converter

The push-pull buck converter of Fig. 3.1 provides the same performance at its terminals

as the full-bridge version, the internal differences are uncovered in the following analysis.

Based on the switch existence function (2.2), the switch currents are:

isa = ds(0)t)NIo
oo

= DsNIo + 2NIo _. nl_sin (nxDs)cOs (n_t)
/g n=l

and

isb = ds(t.0t-x)NIo
oo

= DsNIo + 2NIo _ lsi n (ngDs)cos(n_)cos(nc0t).
/t n=l

(3.53)

(3.54)

The input current is is equal to the sum of isa and isb; it is therefore the same as (3.4) and all

conclusions related to C S for the full-bridge topology apply here as well.

The effective duty cycle is 2Ds; the dc input current is

Is = 2DsNIo. ( 3.5 5 )

The transformer volt-second integral (VSI) is the same as for the other buck converters.

However, it should be noted that two primary windings of np turns each are required, and that

they must be closely coupled magnetically. This causes the primary difficulty in constructing

this transformer. The rms current in either transformer primary (or switch) is

ivpd(rms) = isw(rms) = NIofl_s- Is

21_s (3.56)

Because there are two primary windings each having an rms current equal to that of the full-

bridge divided by lf2-, 41% more copper is required for this transformer primary.

The switches in the push-pull circuit block a voltage

vsw = 2Vs (3.57)
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assumingperfectcouplingbetweenthe primaryhalves. The averageswitchcurrent ratingis:

Is

isw(avg) = NIoDs = _-. (3.5 8)

Therefore, the expected conduction loss per switch, assuming ohmic switches, is:

Pomvl = (NIo_DsRDs = I2s_R--_Ds.
'*L_S (3.59)

The worst case for (3.59) occurs at low line, for which 2D s = 1.0 and PDES = Is(max)Vs(min)

POHM I= 1 Is(max)PDES 2 Vs(min) RDS ( 3.6 0 )
WC

Assuming a blocking voltage of 2Vs(max), four devices could be paralleled to form two switches.

Using (3.1) as the model for an ohmic switch of a given die size (K is the same as for the full

bridge), the following total conduction loss is obtained:

PCOND

PDES
WC

"[2Vs(min)] [K(2Vs(max))2.5)]

=2¢'2-Is(max) KKTDVI"S(max) (3.61 )

If four devices of the same size (K is the same) were seriesed to form two switches, the total

conduction loss would be:

PCOND = 21s(max)K KTDV1s'5(max).PDES (3.62)
WC

This result assumes ideal voltage sharing and can be seen to be the same as would be obtained in

the full-bridge topology.

For constant-voltage-drop switches, the worst-case total conduction loss is:

PDES Zvstmax) ( 3.6 3 )
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Blocking-voltage-related switching losses will be higher in the push-pull topology than

in the full-bridge or half-bridge circuits. The peak switched current is the same as that of the

full-bridge. Energy trapped in leakage fluxes which are coupled by both primary windings are

returned to Vs in the same manner as in the full-bridge circuit. The minimum off-time given

by (3.36) is need for currents related to this leakage flux to decay to zero. (In this equation,

Lep is interpreted as the primary-secondary leakage inductance referred to either primary

half-winding.)

A major problem in applying the push-pull converter arises from imperfection in

primary-primary coupling. Energy stored in this leakage flux produces a voltage overshoot on

the blocking switch in the same manner as layout inductance, and it must either be dissipated (if

dissipative snubbers are used) or recycled using more-complicated energy-recovering

snubbers. This difficulty discourages the application of this topology at higher power levels.

ComDarlson of Buck Topolo_ole_

The full-bridge form of the buck converter is favored by most designers for high-power

designs. Therefore, it will be used as the standard for comparison with the half-bridge and

push-pull circuits. The results of the previous sections are summarized in Tables 3.1 and 3.2.

Table 3.1 compares power circuit component sizing information for the three topologies.

It is found that for given input-output ripple specifications, all three topologies store the same

total energy in C s and Lo. However, the half-bridge is disadvantaged by requiring two input

capacitors, each rated for twice the rms current needed for the full-bridge input capacitor.

The push-pull topology requires a bigger transformer than the full-bridge. The VA

product required is 21-percent greater due to the extra primary winding. The most severe

practical limitation is probably the difficulty in closely coupling the two primary windings.

Energy trapped in this leakage flux cannot be recycled without energy-recycling snubbers.

Table 3.2 compares the three topologies on the basis of switch ratings and expected

conduction losses. The basis of comparison here is four devices of a given size which can be
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paralleledor seriesedin an idealmanner. It is easily established that all three topoplogies have

the same switch rating factor "R":

Rrms = Ravg = 2KTDPDES,

where Rrrns is defined to be the product of the total number of switches, their peak voltage

rating and their rms current rating. The switch rating factor could also be defined in terms of

the average switch current, producing the same result. If devices of a given type can be ideally

paralleled, the conduction loss of the half-bridge topology is equal to that of the full-bridge. If

devices of a given type could be ideally connected in series, the same would also be true of the

push-pull topology. Seriesing is difficult, and should be avoided in practice, however. If ohmic

devices obey the relation (3.1), then on-resistance increases with the 2.5 power of the voltage

rating. Because of this, paralleling ohmic devices in the push-pull topology results in a 41-

percent conduction loss penalty. Paralleling constant-voltage-drop devices in this topology may

lower conduction losses, however.

If VSW does not increase as much as linearly with blocking voltage, then the push-pull

topology would have a conduction loss advantage. This may be useful with exceptionally low

source voltages, where both ohmic and constant-voltage-drop devices tend to have resistance or

voltage-drop dependent on die size and current density, but not voltage rating.

It seems clear that the full-bridge topology is favored for high power designs with good

reason. Therefore, the design criterea obtained for the full-bridge buck topology will be

compared with full-bridge versions of other converter types.
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Table 3.1, Buck Converter Topology Comparison

4:=
0

Full-Bridge

Half-Bridge

Push-Pull

Input Capacitor Cs

Cs > PDES 2_

to 27 RvV2(min)

RMS Current:

irrr_ = 1 NIo

Total Stored Energy:

ECs - PDES XKTD (1 + Rv) 2
27 Rv

Need Two units,
each 2Cs

RMS current:
irms = NIo

Total Stored Energy:
Same as FB

Same as FB

Output Inductor

Lo -> PDES X KTD- 1
O) 2RiI_(max) KTD

Total Stored Energy

ELO = PDES g,._ (1 + RI) 2
to 4 KTD RI

Same as FB

Same as FB

Transformer

Design Turns Ratio:

N - ns _ Vo
np Vs(min )

Volt-Second Integral:

VSI = V____o
2fns

Volt Ampere Product:

VSI .Zni - PDES
f

Same as FB

N same as FB, but
two primaries needed.

VSI same as FB.

VSI -_ni - PDES 1
f 2

, ( i _ i i I i t I t t ( ! f I l I (



I i I I I I t I I I t t' I I I I ( t I

Full-Bridge

Half-Bridge

Push-Pull

Table 3.2. Buck Converter Topology Comparison

Switch Rating
(each)

VsJ.max)

PDES

2Vs(min)

PDES

2Vs(min)

Vs(max)

PDES

Vs(min)

PDES

Vs(min)

2Vs(max)

PDES
2Vs(min)

PDES

2Vs(min)

(V peak)

(Arms)

(A avg)

(V peak)

(A rms)

(A avg)

(V peak)

(A rms)

(A avg)

Worst-Case Total Conduction Loss

(4 ohmic devices) (4 const-volt devices)
die size" K 1 1

P_ND = 2Is(max) K KTD" V_'_(max)
PDES

Paralleled Devices:

Same as F'B

Paralleled Devices:

= 2"/'2-Is(max) K KTD" vl-5(max)
PDES

Seriesed Devices:
Same as FB

PCOND _ 2 Vsw
Vs x)

Paralleled Devices:

PCOND _ 2 KTD VSW
PDES 2Vs(max)

Seriesed Devices:
Same as FB

Paralleled Devices:

Same as FB



BOOST CONVERTER

A full-bridge boost converter is illustrated in Fig. 3.4, with idealized waveforms in Fig.

3.5. Half-bridge and push-pull implementations are also possible, but would not be

advantageous at higher power levels for the reasons explored in the previous section on the buck

converter; these are therefore not included here. Fig. 3.5 illustrates a set of drive waveforms

which provide lowered conduction loss due to the fact that the inductor-charging interval is

provided by turning on all switches simultaneously. This divides the source current between

two parallel paths for a significant portion of the switching cycle. Alternate gating patterns are

possible [23], such as the phase-shift pattern shown in Fig. 3.3 for the buck converter, but

these produce the same net result. The phase-shift pattern does ease gate circuit design because

of its fixed 50-percent duty cycle.

Perhaps the salient feature of Fig. 3.4 is the fact that the transformer is "current-fed,"

being supplied by an alternating current source with its secondary rectifier terminated

*voltage-stiff" due to the large capacitor C o. This is very beneficial in some ways. The tendency

of the transformer core to *walk" up or down its B-H loop due to residual unbalance in the

bridge switches is minimized by the impedance of Ls to sudden increases in transformer

magnetizing current. The core walking problem can be a concern in the voltage-fed buck

converters of Fig. 3.1, especially when square-loop core materials are used.

In the voltage-fed circuit, the core-walking problem is treated by air-gapping the

transformer, or providing some type of 'feedback such as current-mode control [24]. Current-

fed-transformer designs have a potentially serious drawback, however. Substantially low

leakage inductance must be obtained in the transformer because the energy stored here causes a

voltage spike at the switches when they tum off. This energy must be collected by the snubbers,

either to be dissipated or recycled. The power efficiency tends to be impared by this problem.

(An experimental 2-kW 20-kHz converter built for this current research effort did not exceed

85 percent efficiency, primarily because of this problem.)
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Fig. 3.5 Idealized waveforms for full-bridge boost converter.
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Fuli-Bridae Boost Converter

The analysis of the boost converter proceeds in a manner similar to that of the buck.

switch existence functions are given by (3.2) as before. The input voltage is:

The

Vo [1.ds(COt_lt)]___Vs(COt)= [1-ds(Ot)] -N-- +

V_oxVo 4 nl--sin(nxDs)cos (nmt)=2(1-Ds) _- x N

for n even only.

The dc voltage transfer ratio is given by

where

(3.64)

Vo= NVs _NV._

2(1-Ds) 2D's (3.65)

D's- 1-Ds, 0<D's< 0.5.

The dominant unwanted component of Vs is the second harmonic.

(3.66)

Its amplitude is:

2Vo •
Ivs21---  --sm(2xDs) Vpeak (3.67)

Assuming that all of the ripple-voltage content of vs is supported by Ls, its peak ripple current

[iSR[ = _- (.___Vo2D;--'_)dt
iS found:

= Vo (2D's)(1-2D's)
4NLsf

A peak
(3.68)

The output current io is:

G(_t) = 2D_-_- ----

for n even only.

Oo

4 Is _ lsi n (rooDs)cos ncot
/1;Nn= 2 (3.69)
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Thedominantunwantedcomponentis thesecondharmonic.Thermsvalueof io is readilyfound:

I s

io(rms)=

Therefore, the rms ripple current in C o is:
I S , ,

 (rms) = d2D (1-2D;

V 2D;

(3.70)

(3.71)

For a given output current Io, the worst-case value of (3.71) occurs at the lowest Ds within

the operating range.

The ripple voltage appearing across C o can be estimated by neglecting its ESR and

assuming that all of the ripple current passes through it.

IvoRI 2 Col ° (N--

_ Is (2D's)(1-2D's)
4CoNf

= Io (1.2D's) Vpeak
4Cof (3.72)

There are normally additional contributions to this peak ripple voltage due to the capacitor ESL

and ESR. These are a function of the style and quality of construction of C o.

The transformer volt-second integral is:

VSI = _ V-sec

ns (3.73)

where ns is the number of secondary turns. The secondary winding current is
] ,-., IoisF.c(rms)=_= ____ Arms.

N _/2D's
(3.74)

The product of the VSI and the total ampere-turns provides a measure of transformer size:

VSI • E ni = _2D_
t - (3.75)

The transformer area product is readily calculated from (3.75) for a given flux density and

current density, along with appropriate stacking and winding factors.
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The switch ratings include a blocking voltage requirement of

Vo V peak
VSW =

The following current ratings are found from Fig. 3.5.

and

(3.76)

isw(avg) = 21-Is A avg ( 3.7 7 )

A rms,isw rms>= (3.78)

The input inductor and output capacitor are chosen to meet specific ripple criteria.

Using the definition of current-ripple factor R I given by (3.21), and using (3.68) and (3.69),

the following design equation for Ls is found:

(3.79)

Ls Vo ' 2 '= (2Ds) (1-2Ds)
4N2IoRif

For a given output voltage and current, (3.79) maximizes for 2D's = 2/3, giving:

Ls 2 Vo

27 N2loRif (3.8 0 )

The ripple factor increases when Io is less than the design value (usually full load). The output

capacitor is determined to meet a voltage ripple requirement Rv. Using (3.72):

Co = Io _ (1-2D's)
4CoVof

(3.81)

This maximizes at the lowest value of 2D's within the operating range. A suggested design

procedure would be to set N using (3.65) and assuming 2D's = I at the maximum input voltage.

N- Vo
Vs(max)

(3.82)
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The minimum value of 2D°scan then be found:

2D's(min) - NVs(min) = 1
Vo KTD

The required value of CO is therefore:

(3.83)

Co > I° KTD-1
4RvVof KID (3.84)

The stored energies in Ls and Co are calculated after the manner of (3.25)-(3.28) producing:

ELS - PDES /L K2 (1 +RI)2 and
co 27 RI

Eco = PDES _ KTD- 1 (1 +RI) 2
co 4 KTD RV

(3.85)

(3.86)

The conduction loss for each ohmic switch is estimated using (3.78), (3.65) and (3.82):
2

= 1P_Ks (i Vs )
POHM = ( )2(I+ 2D's)RDS 4 V 2 + Vs(max) RDS

(3.87)

The design power is equal to the product of Is(max ) and Vs(min ). The worst case for (3.87)

will occur at low line (Vs = Vs (rain)):

POHM [_c I Is(max)(1+--L-) RDSPDES 4 Vs(min) KTD (3.8 8 )

The normalized conduction loss for all four ohmic switches, assuming they follow the model of

(3.1), is found using (3.76) and (3.88):

Pc'or,a)[= Is(max)K (I + KTD) Vs1"5(max)

PDES ]wc
(3.89)

The conduction loss for each constant-voltage-drop switch is found using (3.77):

Pcv = IsVsw

PD_ 2Is(max)Vs(min) (3.90)
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The worstcase for (3.90)occurswhenIs = Is (max).

switchesthe worst-caseconductionloss is:

For all four constant-voltage-drop

PCOND ]= 2KTD Vsw
PDES ] Vs(max) (3.91 )

wc

The switching losses in the boost converter are related to the current interrupted and the

voltage blocked, as always. However, the additional factors influencing these losses are quite

different from those of the buck converter. At switch turn-on, current is commutated from the

secondary-side rectifier to the incoming switch. Rectifier reverse-recovery-transient

current may flow in the loop including the bridge switches, the transformer and capacitor CO.

The transformer leakage inductance will tend to control this transient current. The major

difficulty with this circuit will be the voltage overshoot at switch turn-off caused by the

transformer leakage inductance, which will invariably be much higher than the layout

inductance achievable in the buck converter. Thus, a difficult trapped-energy problem may

arise with this (or any current-fed) topology unless a low-leakage-flux design is possible for

the transformer. The required blocking-voltage rating on the switches is likely to be much

higher than Vs(max ), therefore. Energy-recovering snubbers will be needed if significant

leakage inductance exists in the transformer.

It is of interest to note that the buck converter (and all other voltage-fed topologies)

provide a well-defined blocking voltage for their switches, if a low-inductance layout can be

obtained. The topological dual, the boost converter (and all other current-fed topologies),

provides a well-defined conduction current for its switches. The voltage-fed topologies are

subject to transient currents at turn-on due to diode recovery. The current-fed topologies are

subject to transient voltages at turn-off due to transformer leakage flux. Switching loss

considerations probably tend to favor the boost, or other current-fed topologies, at low input

voltages where over-rated switches are possible without on-resistance penalty, and low-

leakage transformer design is easier.
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OTHERDC-DCCONVERTERS

The buckandboostconverters have been studied in detail because they are basic; other

dc-dc converters are generally derived from these and share their properties [23]. The

Weinberg and TRW converters are next reviewed briefly.

Weinbera Converter

Fig. 3.6 shows a full-bridge Weinberg converter [23]. Idealized operating waveforms

are shown in Figs. 3.7 and 3.8. The salient features of this topology are its current-fed

transformer, and its capability of operating as either a buck converter, or a boost converter.

Fig. 3.7 illustrates buck-mode operation. Switch existence functions are shown, with the

restriction that their duty factors lie in the range 0 _<Ds-< 0.5 When a set of bridge switches

is closed, the inductor current is is coupled to the output through the transformer. Opening

the bridge switches transfers the inductor current to its closely-coupled secondary, thus

maintaining a continuous output current 01 + i2) if the inductor turns ratio is set equal to the

transformer turns ratio as assumed here. It is easy to establish that the ideal voltage and

current transfer ratios are the same as those of the buck converter. One difference is found in

the switch blocking voltage, which may be as high as twice the supply voltage in the buck mode.

Also, the leakage inductance problems inherent to the current-fed transformer are compounded

by the need to maintain close coupling on the inductor as well.
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The boost mode of the Weinberg converter is automatically entered when Ds exceeds 0.5.

In this mode the input current is becomes continuous, the secondary of the inductor not being

active. The circuit then operates the same as the boost converter discussed previously.

A buck-boost mode is also possible if all four bridge switches are operated in unison. The

energy transfer would then be entirely through the inductor, the transformer not participating

at all. This mode has no practical utility because buck and boost operation are already available.

The main attraction of this circuit would be its ability to operate as a boost converter

under nominal conditions, but as a buck converter under fault conditions (such as load short-

circuit). The boost converter has _ lower conduction losses when ohmic devices are

used (compare (3.34) with (3.89)); however, it cannot operate with a load voltage lower than

the reflected source voltage NV s. The Weinberg circuit would permit normal operation in the

boost mode, with start-up or short-circuit operation in the buck mode. This possibility was

investigated experimentally on this grant and previously reported [14]. The converter worked

as expected, but did not have notably high efficiency due to the snubbing losses associated with

the imperfect coupling in the inductor and transformer. Another factor not yet considered here

is the fact that in its buck mode the Weinberg converter exposes its switches to as much as

2Vs(max). The boost-converter conduction-loss estimate of (3.89) is based on the ohimic

switches rated for Vs(max ). Therefore, for a given device die size, the boost-mode loss of the

Weinberg converter would become 22.5 greater than that of the ordinary boost converter, thus

erasing the potential gain. This converter is therefore not recommended for high-power

application, except for the case of an unusually low source voltage.

TRW Converter

Fig. 3.9 shows a TRW converter [23]. Here, the first switch operated with the existence

function dsl provides buck-mode PWM control of the output voltage. The bridge switches are

operated with simple 50-percent duty cycles. The benefits (and liabilities) of a current-fed

transformer are obtained in this circuit. As pointed out in [23], operation with a relatively

small Lo can be used to lower the switching losses in the bridge switches--in the
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discontinuousconductionmodethe switchinglosswouldbe zero. However,the extraswitchesin

the currentpath will result in increasedconductionlosses for this circuit, relative to a full-

bridge buck converter. The TRW converter is shown here because it provides a means of

exchanging switching losses for conduction losses, and for obtaining a current-fed transformer

in a buck converter. However, it does not seem likely to offer any over all improvement on the

basic buck converter, and is therefore not investigated further.
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SUMMARY OF SUGGESTED DESIGNS

Suggested designs for full-bridge buck and boost converters are summarized here for

future reference. These designs are tabulated in Tables 3.3 and 3.4, along with expected worst-

case conditions in the circuits. In both cases, transformer leakage flux is neglected in setting

the turns ratio, as is switching device voltage-drop.

The boost converter is seen to have one DIZtP,.DIJ_advantage over the buck in the area of

ohmic-switch conduction losses if large turn-down ratios are required. This advantage would

be lost if tight coupling could not be achieved in the transformer, however. The major

disadvantage of the boost converter, its inability to feed a faulted load, will eliminate it from

further consideration for the application, however.

Likewise, the Weinberg converter has been eliminated due to its increased switch voltage,

which negates the possible advantages of the boost mode unless operation down to a small

fraction of the nominal input voltage is required. The TRW converter separates the buck

converter from the transformer-feed switches, permitting a current-fed transformer. It is

eliminated due to the extra conduction losses resulting. The transformer core-ratcheting

problem is better solved in the control circuitry than in the power circuit.

The buck converter design of Table 3.3 is therefore carried forward for comparison with

the resonant dc-dc converters.
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Table3.3 Full-Bridge Buck Converter Design Summary

Transformer
-Turns Ratio

-Volt-Second Integral

-VSI-Ampere Product

Duty Cycle Range

Input Capacitor

-Value

-Ripple Current

-Stored Energy

Output Inductor

-Value

-Stored Energy

Conduction Losses

-Four Ohmic + Devices

-Four CV Devices

N = ns Vo

np Vs(min)

VSI = Vo
2fns

VSI- Zni - PDES
f

1_.!__ < 2D* < 1 where KTD --
KTD-

Vs(max)
Vs(min)

Cs - PDES 1
V_s(min) 27 f R

ies(rms) = 0.5 PDF_
Vs(min)

Ecs= PDES ..K_ 2 (I+R) 2
CO 27 KTD R

Lo=PDEs 1 KTD-1
12 4fR KTD

ELo=PDEs _ KTD-1 (1 + R) 2
to 4 KTD R

= 2 Is(max)KTD'K Vls'5(max)
PDES

PCOND = 2 KTD VSW
PDES Vs(max)

*Effective duty cycle D = 2 Ds

+

RDS = KV 2"5
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Table 3.4 Full-Bridge Boost Converter Design Summary

Transformer

-Turns Ratio

-Volt-Second Integral

-VSI-Ampere Product

Duty Cycle Range

Input Inductor

-Value

-Stored Energy

Output Capacitor

-Value

-Ripple Current

-Stored Energy

Conduction Losses

-Four Ohmic + Devices

-Four CV Devices

N - n__== Vo
np Vs(min)

VSI = V__..q_o
2ns

VSI • gni = PDES
f

_ Vs(max)
1 < 2 Ds_ < 1 where KTD - Vs(min)KTD

Ls = V_s(max) I
PDES 27 f R

ELS- PDES _g__ 2 (I+R) 2
to 27 KTD R

Co - PDES I KTD -i

V2o 4fR KTD

ico(rrns)= Io_V_--l-

Eco= _ /_.KTD-I (1 + R) 2
to 4 KTD R

PCOND = 2 Is(max) (1 +KTD) K vl-S(max)
PDES

PCOND = 2 KTD Vsw
PDES Vs(max)

*Effective duty cycle D = 1 - 2D's

+ RDS = K V 2"5
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IV. ANALYSIS OF RESONANT TOPOLOGIES

Much research effort has been expended on the resonant dc-dc and dc-ac converters in the

past ten years. Claims made for various resonant topologies generally include higher switching

frequency (for a given switching device), lower EMI and, sometimes, higher efficiency. These

claims need to be examined critically in the light of the specific requirements of the problem at

hand. The first claim, higher switching frequency, seems to be generally true. The various

resonant converter eliminate switching losses on some of the switch's on-off transitions. The

lowered switching loss, together with effective use of the transformer leakage inductance as a

resonant circuit element, permits higher frequency. However, it is also invariably true that

resonant converters suffer increased conduction losses, either due to multiplied switch

currents (when zero-current-switching is obtained), or multiplied switch voltage (when

zero-voltage-switching is obtained). The claim of higher efficiency is thus suspect, because the

reduced switching loss of a resonant converter is obtained at the expense of increased conduction

loss. It may be more accurate to claim higher efficiency at higher frequency. However, the

highest attainable efficiency will probably be found by operating the topology having the lowest

conduction loss at a low switching frequency. This approach will result in large bulk and

weight, however. This chapter will review a variety of resonant dc-dc and dc-ac converters to

characterize their expected conduction losses and component sizes for comparison with the non-

resonant converters previously considered.

SERIES-RESONANT INVERTER/CONVERTER

The series-resonant conv_=rter [25, 26] is a useful higher-power dc-dc converter

topology. An application of this to an ac distribution system in which the majority of the loads

contain rectifiers has also been proposed [11, 12]. Because of the similarity of these two

circuits, they will be considered together, either one being referred to as the "SRC." However,

they are distinguished by variable-frequency or fixed-frequency operation.

Fig. 4.1 shows a full-bridge SRC. This is used as a dc-dc converter; control is by

variation of the switching frequency relative to the resonant frequency. Either above- or
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below-resonanceoperationmaybe selected. The switchdutycycle is fixed at 50 percent.

Voltage-stiff interfaces are made at the input and output sides using capacitors C s and Co. In

addition, significant resonant elements L and C are needed, plus a transformer to provide

isolation and scaling.

Fig. 4.2 shows an ac distribution system established by an SRC having its ac link

extended, and its load rectifier subdivided into multiple units for multiple loads. Because

constant-frequency operation is probably a requirement for the ac distribution approach, lhe

SRC is switched at a fixed frequency, with load regulation and short-circuit protection provided

by the dc-dc converter of Fig. 4.2. This dc-dc converter may itself be an SRC as proposed in

[11, 12], but other dc-dc converter topologies could be used as well. Load voltage scaling could

be provided at each load by adding a high-frequency transformer, an advantage for this

approach. However, the composite of all loads and load-bypass capacitors

CoA, CoB .... reflected back to the main transformer secondary should be equivalent to the

single units shown in Fig. 4.1. The analysis of the ac-distribution portion of Fig. 4.2 is

therefore the same as that of the SRC, with the exception of fixed-frequency operation. The

analysis of the dc-dc converter portion of Fig. 4.2 is done separately, according to the topology

selected for this use.

61



+ C s

V$----

is

I

f

C

n

4-

Co V o

ns ,N=-- mo = -- e =
np _ o

Fig. 4.1 Series-resonant dc-dc converter (SRC). Above- or

below-resonance operation may be selected.



i J I i i A I l I I I J i J i I i

pasn s! _ouanbaJj

luguoseJ eql Jgau uo!IgJedo _ouanbeJj-pax!j

3_S uo uo pasgq LUalS_S uo!Inq!JlS!p-og uv

• • e Isul

!

i
vo 3

rot

"1
3

_1
; 13,

vo_

aSp!Jg
i±P

-- _-- O(rj

I

d
U

--=N
s

u

JalJaaUO3

3(3 - 30

M
_D



Varlable.Freauency SRC Deslon and Performance

A useful design procedure for the SRC is found in [27]. This procedure attempts to

minimize component stress (peak stored energy in the resonant tank, plus the peak switch

current) while meeting design goals. The proposed procedure treats the resonant tank

characteristic resistance (Z o) and the transformer turns ratio (N) as design variables. The

following design results and equations are taken from [27].

The recommended full-load design operating point of [27] is for below-resonance

operation:
M -= Vo = 1 and

NVs

j _ NZolo ___1.4, where
Vs

0)o - 1 7--.o-- and N ----np"

(4.1)

The corresponding recommendation for above-resonance operation is:
M =_0.95

J =0.2 (4.2)

It is also concluded that above-resonance operation is preferable to below-resonance operation

in terms of component stress. These recommendations will be directly applied to the SRC of Fig.

4.1 to develop a design procedure. For the constant-frequency SRC of Fig. 4.2 they must be

modified to ensure adequate short-circuit-current limiting during the initial portion of the

transient when Cs has not yet discharged.

The design procedure corresponding to (4.1) and (4.2) is next developed. For below-

resonance continuous-conduction operation, the normalized output current-output voltage

relationship is:

J = _7{1 +_/1 +(1-M2)tan2_}

/t03o
where "/-- (,o (4.3)

The control variable _' is related to the switching frequency ¢o as above. For above-resonance

operation, the relationship is:
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For design purposes, it is useful to rewrite (4.3) and (4.4) as follows:

1)2_ 1
M= 1- 2-

tan 2 -Y
2

(4.s)

where the + is selected for above-resonance, and the - is selected for below-resonance.

Because the desired value of M _--1 can only be approached as a limiting case as 7 approaches 180

degrees (co approaches too), the proposed design procedure is to first identify how closely one is

willing to approach the resonant frequency. Margin for controller imperfection must be

maintained, because passing through resonance resulls in the unintended mode, and the reversal

of the sign of the control transfer function.

The following suggested design values are to be applied at the minimum input voltage:

M < MDE s = 0.95

J < JDES = 0.2

CO> 1.35
_o

or

(above resonance) (4.6)

M < MDES = 0.90

J -<JDES = 1.4

-_< 0.83
COo (below resonance) (4.7)
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The requiredtransformerturns ratio and tank characteristicresistanceare found using (4.1).

N = V°
MDESVs(min)

= 1.053 Vo
Vs(min)

= 1.111 Vo
Vs(min)

(above resonance)

(below resonance) (4.8)

zo
V_(min)

= MDESJDE S
Volo

= 0.1900 V_(min)
Pozs

= 1.260 v'2(min)
PDES

(above resonance)

(below resonance)(4.9)

Once the desired switching frequency at design conditions is selected, the resonant frequency can

be found using (4.6) and the design is fixed.

Peak capacitor voltage and peak inductor current are used to calculate peak stored energy

in the resonant tank. The following normalized expressions are taken from [27]. For above-

resonance operation:

J

Ivi.,

tan-1 (Mct, + 1)2- 1
I-M 2 (4.10)

JLP- 1 + M

-I,_/(JLP+ M)2 - I
tan

V 1-M 2

for J'M-_ < JLP

(4.11a)

-1+3/1 I - M 2

tan 1[ JLP ]
"tiz J (4.11b)

66



for J-_ > JLP •

For below-resonance operation:

J=

x - tan -1

Mcp

_V/(Mcp- 1)2- 1
(4.12)

J
JLP + 1 -M

/t - tan -lq/(JLP" M)2 - 1
V

where the following normalized quantities are defined:

Vcp (peak capacitor voltage)Mcp ---KTDVs(min)
ILPZo

JLP - K'rDVs(min) (peak inductor current)

Vo (output voltage)M - NKTVVs(min)

j = loZo
NKTDVs(min) (output current) .

(4.13)

An apparent typographical error has been corrected in (4.11b).

above normalization definitions allow for a variable supply voltage

KTD is the turn-down ratio.

It should be noted thal the

Vs = KTDVS(min), where

The peak stored energy in the resonant tank is calculated from the following:
2. 2 2

ETANK = 2 LILP + _JK_Vcp
&,

Z L(Oo /-,o 0)oZo

(4.14)

Assuming that Z o has been determined according to the design procedure (4.9), and that the

normalized current and voltage values above are based onVs(min), the tank energy is:

ETANK- PDES j2p + M_p
0% 2(0.1900)

or

ETANK = PDES j2p + M2p
COo 2 (1.260)

(aboveresonance)

(below resonance)

(4.1s)
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The rms value of the tank current can be found for the below-resonance case in [28].

The switch rms current is 70.7 percent of the tank rms current because of the half-wave

symmetry known to exist in the SRC.

isw(rms)= iTANK(rms)

(4.16)

The average switch current is one-half the dc input current, the worst case occurring at low-

line. Using (4.9):

isw(avg)= 1 PDESVs(min)

= 0.095 V,(min) (above resonance)
Zo

= 0.630 Vs(min) (below resonance)
Zo (4.1 7)

The peak voltage and current appearing in the resonant tank are now calculated for the

given full-load design conditions. Variable input voltage is assumed. Note that (4.3) - (4.13)

must be solved numerically, being careful to enter using the actual supply voltage as the

normalization base. The results are tabulated in Table 4.1, after returning to a normalization

based on Vs(min). It is interesting to note that the above-resonance design shows diminishing

capacitor voltage with increasing input voltage, the load conditions constant at rated power. The

inductor peak current rises 40 percent with doubling input voltage, however. It can also be

seen that a below-resonance design has substantial increases in both the capacitor voltage and

inductor current when the input voltage increases, the load being held constant. Tank energy is

also indicated on Table 4.1, normalized with respect to the power level and resonant frequency.

It can be seen that the worst-case for stored energy occurs at high line, as might be expected.

Table 4.2 displays switch rating information and conduction losses for the full-power

operating conditions of Table 4.1. The ct angles corresponding to the below-resonance entries on

Table 4.2 are given to permit consulting [28], from which the indicated rms tank currents

were obtained. The rms tank current for the above-resonance design was estimated, assuming
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that the current has the same peak-to-rms ratio as a sinusoid.

ohmic switches can be found from:

PCOND _ 4 . lS2W (rms) .KVs2"5(max) .
PDES PDES

The conduction losses for four

(4.18)

This expression should be evaluated under the conditions resulting in the highest switch

current.
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Above

Resonance

Design

Below
Resonance

Design

Table 4.1 Variable-Frequency Series-Resonant-Converter Design
(Resonant Tank Stress)

Vs = Vs(min)

= 1.352

7-,o= 0.19 Vs2(min)/PDEs

Vo = 0.95 N Vs(min)

IoNZo = 0.2 Vs(min)

Vcp = 0.23 Vs(min)

ILp = 0.28 Vs(min) = 1.49
zo

ETANK = 0.35 PDES/03o

= 0.48 PDES/03

PDES

V,(min)

to = 0.830
030

7,o = 1.26 V_min)/PDEs

Vo = 0.90 N Vs(min)

IoNZo = 1.4 Vs(min)

Vcp = 2.65 Vs(min)

ILp = 2.55 Vs(rnin) = 2.02
Zo

ETANK = 5.36 PDES/e)o

= 4.45 PDES/o)

PDES

Vs(min)

Vs = 1.5 Vs(min)

03 = 3.854
030

Vo = same

Io = same

Vcp = 0,082 Vs(min)

ILp = 0.39 Vs(min) _ 2.04 --
Zo

ETANK = 0.41 PDESJ03o

PDES

Vs(min)

to = 0.6545
030

Vo = same

Io = same

Vcp = 3.36 Vs(min)

ILp = 2.76 Vs(min) _ 2.19
zo

ETANK = 7.50 PDES/(oo

PDES

Vs(min)

Vs = 2.0 Vs(min)

to = 6.267
030

Vo = same

Io = same

Vcp = 0.050 Vs(min)

ILp = 0.40 Vs(min) = 2.09
Z-,o

ET,_K = 0.42 PDF_,S/03o

to = 0.5429
030
Vo = same

Io = same

Vcp = 4.05 Vs(min)

ILp = 2.95 Vs(min) _ 2.34
Zo

ETANK = 9.97 PDES/e)o

PDE_

Vs(min)

PDES

Vs(min)



Above

Resonance

Design

Below

Resonance

Design

Table 4.2 Variable-Frequency Series-Resonant-Converter Design

(Switch Stress and Conduction Loss)

Vs = Vs(min)

cO = 1.352
COo

See also Table 3.1
t

ITANK = 0.20 Vs(min) (Arms)
. Zo

Isw -=-0.14 "''-vs_min)(A rms)
Z.o.

Isw -=-0.095 Vs_un)'--" (A avg)

P_ = 2 Vsw (const.-volt-drop)
PDES

co = 0.830
O)o ot = 500
See also Table 3.1

ITANK = 1.65 Vs(min) (A rms)
Zo

Isw = 1.17 Vs(min) (Arms)
zo

Isw = 0.63 Vs(min) (A avg)
zo

?CtmD = 3.45 Is(max) KTDK V_'5(m_
PDES (ohmic)

P_N1)=2 Vsw (const.-volt-drop
PDES

Vs = 1.5Vs (min)

co = 3.854
t.%

Vs(min)
ITANK = 0.28 ----A--- -- (Arms)

Isw = 0.20 V'-_-s_n) (Arms)

lsw = 0.063 Vs(min)
Zo (A avg)

to = 0.6545
COo

ot = 114 °

ITAr_ --- 1.62 Vs(min) (Arms)

Isw = 1.15 Vs(min) (Arms)
Zo

lsw = 0.42 Vs(min) (A avg)
zo

x)

Vs = 2.0 Vs(min)

co = 6.267
COo

Vs(min)
ITAr,m = 0.28 -----w-- (Arms)

• .Z,o

Isw = 0.20 Vs__n) (A rms)

lsw -=-0.048 Vs(min)
* Zo (A avg)

PCOND __.4.4 Is(max) KTDK Vls5(max)

PDES (ohmic)

to= 0.5429
_o

= 159 °

ITANK _ 1.60 Vs(min) (Arms)
L_

Isw = 1.13 Vs(min) (Arms)
Zo

VS(min) •Estimated

Isw = 0.32 Vs(min_______))(A avg)
Zo

, I I I I I [ I l I I I I i I I ! I I



For below resonance operation, the worst-case of (4.18) occurs at low-line. Using

(4.9),

PCOND 1Sc 3"45 IS (max) KTD K V_'5(max)PDES

where Is(max) = PDES/Vs(min) •

(below resonance) (4.19)

For above-resonance operation, the worst-case occurs at high-line:

PCOND t.7_ 4.4 IS (max)KTDK V_'5(max)PDES (above resonance) (4.20)

where Is (max) is interpreted the same as before. The above-resonance conduction losses seem

to drop at low-line. Because of the error possible in the estimated rms switch current, the

difference between (4.19) and (4.20) is probably not significant. The total conduction loss for

four constant-voltage-drop devices is found using (4.17):

PCOND _ 2 Vsw
PDES Vs(min) (4.2 1 )

This applies both above and below resonance. The results of (4.19) - (4.21) are entered

on Table 4.2 in the columns representing their worst-cases.
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Fixed-Frequency SRC Desi_an and Performanc_

The ac-distribution system illustrated in Fig. 4.2 contains a fixed-frequency

SRC with its ac link extended to a multiplicity of paralleled loads. Because the majority

of the anticipated loads will need filtered dc, simple rectifiers of the type shown are

assumed at each load. The composite effect of all loads is much the same as that of the

single load of Fig. 4.1. Fixed-frequency operation is desirable in a distribution system.

Therefore, regulation and steady-state fault-current control is done by the dc-dc

converter of Fig. 4.2. However, transient fault currents must be managed by the SRC

itself, acting without the benefit of a controller. This is especially true if the fault is a

low-resistance short. In this case, the SRC must limit the fault current to an aceptable

level as Cs discharges, a process which could easily take long enough for the SRC to find

a new steady-state as the charge in Cs decays. (The energy in Cs is only dissipated by

the internal losses in the SRC during a fault.)

Although it is not shown in Fig. 4.2, a rectifier feeding Cs from the bus should be

provided in case of an open-circuit fault. This rectifier normally would be inactive, but

would limit the transient ac voltage and recycle the energy stored in the resonant tank in

case of an open-circuit fault.

The previous design equations are now used to explore an SRC design with

inherent fault-current limiting. For this purpose, the ratio of fault current to design

full-load current is calculated using (4.3) and 4.4):

Io(DES) JDES JDES
(4.22)

where the - is selected for above-resonance and the + is selected for below-resonance

operation. In the application of (4.22), the input voltage is assumed to be regulated at

its design value by the dc-dc converter. The suggested design conditions of Table 4.1
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were checked using (4.22). Above-resonance operation

(o)/O)o = 1.352, MDES = 0.95, JDES = 0.2) was found to result in a short-circuit current

ratio of 6.5; below-resonance operation (o)/O)o = 0.830, MDES = 0.90, JDES = 1.4)was

found to result in a short-circuit current a ratio of 1.6. It is apparent that above-

resonance operation near the minimum stress point of [27] will require an additional

current-limiting feedback, with its concomitant shift in switching frequency during

fault conditions. This complication is probably not acceptable, therefore the above-

resonance design approach will require a shift away from the optimum design of [27] to

achieve satisfactory inherent current limiting. The below-resonance fault current of

1.6 times design current is probably acceptable, because it only occurs under fault

conditions, and does not continue indefinitely.

Appropriate designs for above-resonance operation with 2 : 1 short-circuit-

current limiting were investigated. Sample designs are shown on Table 4.3. Three

possible designs ("A', "B" and "C") are shown with their corresponding full-load and

short-circuit component stresses. All exhibit an output-side short-circuit current two

times the full-load current. It can be seen that the normalized load voltage MDES has to

be lower than optimum to achieve current limiting. Comparison of Table 4.3 with the

Vs = Vs(min)entry on Table 4.1 shows that short-circuit-current limiting is obtained

at the price of increased switch current and stored energy at full-load conditions.
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...d
U1

Design

Full-Load
Stresses

Short-Circ¢
Stresses

Table 4.3 Fixed-Frequency SRC Design, Above Resonance

(Inherent 2 • 1 Short-Circuit-Current Limiting)

Design A
JDES = 0.2, MDES = 0.7275

0) o -- to
2.391

z, = 0.1455
PDES

N = 1.375 Vo
Vs

Vcp = 0.1314 Vs

Vs PDES
ILp = 0.3631 _- = 2.50 Vs

ETAI_ = 0.51 PDES = 1.2 PDES
tO

Vcp = 0.2627 Vs

Vs PDES
ILp = 0.7710 _- = 5.30 V,

ET_,TK = 2.28 PDES = 5.45 PDES
tOo tO

Io(sc) = 2 Io (DES)

Design B
JDES = 0.6, MDES = 0.7755

tOo-- tO
1.386

7-,o= 0.4653 V]
PDES

N = 1.289 Vo
Vs

Vcp = 0.6800 Vs

Vs PDES
ILp = 0.9045 _- = 1.94 Vs

ETANK = 1.38 PDES = 1.91 PDES
tOo tO

Design C
JDES = 0.1, MDES = 0.7135

V 2
Zo = 0.07135 s

PDES

N = 1.402 V____q.o
Vs

Vcp = 0.03764 Vs

Ms PDES

ILp = 0.1940 _ = 2.72 Vs

ETANK =0.27 PDF_.S= 1.14
tOo tO

VCp = 1.3600 Vs

ILp = 2.137 Vs = 4.59 PDES
/-,o Vs

ETAr_K= 6.90 PDES = 9.56 PDES
tOo tO

Io(SC) = 2 Io (DES)

Vcp = 0.07528 Vs

Vs PDES

ILp = 0.3953 _- = 5.54 Vs

ET.,U,,n<= 1.14 PDES = 4.74 PDES
tOo tO

lo(sC) = 2 Io (DES)
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Design

Full-Load
Stresses

Short-Circu
Stresses

Table 4.4 Fixed-Frequency SRC Design, Below Resonance
(Inherent 2:1 Short-Circuit-Current Limiting)

Design D
JDES = 1.4, MDES = 0.9549

_o =fit)
0.8_1

Zo = 1.337 V_s
PDES

N =- 1.047 V____o
Vs

Vcp = 2.545 V s

Vs PDES

ILl, = 2.500 _ = 1.87 Vs

ETANK = 4.76 PDES = 4.11 PDES
COo CO

Vcp = 5.089 Vs

Vs PDES

ILp = 4.089 _ = 3.06 - Vs

ETANK = 15.94 PDES _ 13.77 PDES
_o O0

Io(sC) = 2Io(DES)

Design E
JDES ---2.0, MDES = 0.9223

CO° _ O)
0.9030

7-,o= 1.845 V2
PDES

N =- 1.084 Vo
Vs

Vcp = 3.479 Vs

Vs PDES
ILp = 3.401 _- = 1.84 Vs

ETANK = 6.42 PDES _ 5.79 PDES
0.)o

Vcp = 6.955 Vs

Vs PDES

ILP = 5.955 _- = 3.23 Vs

Design F
JDES = 1.2, MDES = 0.9759

(.Jl)o _ (Jr)
0.8431

7--,o= 1.171 Vs2
PDES

N =- 1.025 V___o
Vs

Vcp = 2.236 V_

Vs PDES
ILp = 2.211 _- = 1.89 Vs

ETANK = 4.22 PDES = 3.56 PDES

Vcp = 4.471 Vs

Vs PDES

ILp = 3.471 _ = 2.96 Vs

ETANK = 22.72 PDES = 20.52 PDES
_o 0O

lo(sC) = 2Io(DES)

ETANK = 13.68 PDES _ 11.53 PDES
f.Oo O)

lo(sC) = 2Io(DES)



Table 4.4 summarizes the component stresses for three below-resonance designs

having a 2 : 1 short-circuit-current ratio. As seen in Tables 4.1 and 4.2, below-

resonance operation generally requires more total stored energy in the tank than above-

resonance designs. This increase is primarily due to the high capacitor voltage found in

below-resonance designs -- the corresponding inductor (and switch) currents are

somewhat lower. Below-resonance designs having good short-circuit-current limiting

are generally close to the optimum full-load design, and control peak switch currents

substantially better than equivalent above-resonance designs. They require much

higher-voltage, higher-energy capacitors, and have much greater total stored energy

than above-resonance designs, however. Appropriate above-resonance designs are

somewhat removed from the full-load optimum. However, they still have much lower

total stored energy in their tanks.

The choice between above- and below- resonance operation of the fixed-

frequency SRC should consider two factors: (1) the capacitor voltage and stored energy,

and (2) the peak switch current under short-circuit conditions. The below-resonance

design does a better job of limiting the peak current, while the above-resonance design

does a better job of controlling the peak stored energy, especially in the capacitor.

Design A of Table 4.3 is brought forth as a good above-resonance design. Although

designs D-F of Table 4.4 have been given to provide direct comparisons with designs A-

C, it is now seen that the "optimum" variable-frequency design of Tables 4.1 and 4.2 is

also best for fixed frequency. The short-circuit performance of this design is therefore

studied on Table 4.5. Design G (below-resonance) is seen to have a peak tank current of

2.02 PDES/Vs at full-load with a stored energy of 4.45 PDES/r.0.
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Design
(See also
Tables 4.1

and 4.2)

Full-Load
Stresses

Short-Circuit
Stresses

Table 4.5 Short-Circuit Performance of a

Proposed Below-Resonance Design

Design G (See also Tables 4.1 and 4.2)
JDES ,, 1.4, MDES -- 0.90

0,)o -'-._
0.830

7-,0= 1.260 Vs2
PDES

N = 1.111 V____o
Vs

V¢v = 2.649 Vs

It.p= 2.549 __,s= 2.02

ETANK = 5.36 _SDEs = 4.45 _DES
COo O)

Vet, = 4.169 Vs

Vs PDES
ILp = 3.169 _ = 2.52 Vs

ETAr_ = 10.88 PDE.S. = 9.03 PDES
O_o CO

Io(sc) = 1.574 Io(DES)
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The peak current increases by only 25 percent to 2.52 PDES/Vs under short-circuit

conditions, with the stored energy doubling to 9.03PDEs/CO. In contrast, Design A of

Table 4.3 (above-resonance) has a full-load tank current of 2.50 PDES/Vs, increasing

to 5.30 PDES/Vs under fault conditions. It has much lower tank energy under all

conditions, however, about one-fourth of that of Design G at full-load, and one-half

under fault conditions.

It was concluded in [27] that above-resonance operation is better, and this is

clearly so in terms of the full-load design. However, excellent inherent limiting of the

switch and output currents can be obtained from the below-resonance approach, at the

expense of about four times the tank-stored energy.

An addtional trade-off between above- and below- resonance operation needs to

be discussed. The nature of the switching losses is quite different in the two cases.

Above-resonance operation requires active interruption of the tank current by the

switching devices; however, the switch voltage naturally goes to zero prior to turn-on of

the controlled switch. This zero-voltage-switching reduces turn-on losses to zero and

permits the use of slow-recovery anti-parallel diodes. Also, the turn-off can be

snubbed with Iossless snubbers (capacitors) [29]. Below-resonance operation requires

that the controlled switches commutate current from their anti-parallel diodes,

resulting in switching loss and the need for fast-recovery diodes. Snubbing this

commutation requires series induclors and leads to a trapped energy problem. The

trapped energy is normally partially recovered and partially dissipated. Turn-off of the

controlled switches Is automatic, reducing turn-off losses to zero and permitting the use

of thyristors.
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SRC Interfacino Canacitors and Transformer

The ratings of the required interface capacitors are now estimated for both

above- and below-resonance SRCs. Ripple current in these capacitors can be

approximated as that resulting from a full-wave-rectified sinusoid as in [30]. This

works best near resonance, due to the low harmonic content of the tank current and the

fact that the antiparallel diode conduction angle is small under this circumstance. Away

from resonance, the input current is(0 (see Fig. 4.1) will depart from this model due to

the increasing angle between tank current zero-crossing and the switching of the

controlled bridge. This simple model works better for the output filter capacitor

because the uncontrolled-diode bridge switches at current zero-crossings. Also, the

tank current is relatively more sinusoidal above-resonance than below, especially when

operating away from resonance.

In the case of below-resonance operation, the exact rms tank current is provided

by [28]. Knowing that the rms value of is is equal to that of the tank current, the rms

ripple current in Cs can be found from:

ics(rms) = _/i2TANK(rms) - IS2 (4.2 3 )

The full-load input current Is is given by

Ms ' (4.24)

where it is understood that Vs is variable in a variable-frequency design.

Using the design values of Zo given by (4.9) together with the entries on Table

4.2 and (4.23 - 4.24), gives input-capacitor ripple currents in the ranges:

0.33 PDES tol.39 PDES
V,(min) V (min)

and

0.84 PDES to 1.17 PD_
V,(min) Vs(min)

A rms
(above resonance)

A rms
(below resonance).
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The larger values occur at the higher input-side voltages because the dc-input current

diminishes while the tank current remains about the same.

The rms ripple current in the output filter capacitor Co is found from

;r_(rms) . i2oIco(rms) = N 2 (4.25)

The appropriate output current ]o can be found on Table 4.1 ; design values for N are

given by (4.8).

The results of evaluating (4.25) using Tables 4.1 and 4.2 are output-capacitor

ripple currents in the ranges:

0 to 0.98 Io Arms (above resonance)

and

0.62 Io to 0.55 Io Arms (below resonance).

The above-resonance calculations are based on estimated tank rms currents, and thus

have uncertain accuracy. As a check, it is noted that a full-wave-reclified-sinusoid

model would predict an rms ripple current equal to 48 percent of the corresponding dc

current, an rms second-harmonic current equal to 47 percent of the dc current, and

high-order harmonics (fourth and up) at 11 percent of dc. The above-resonance case is

therefore estimated using the rectified-sinusoid approximation:

ico(rms) = 0.48Io.

The required values for the input/output capacitors can be estimated on the basis

of the rectified-sinusoid model, for which the second-harmonic has a peak value of two-

thirds of the dc. For the input capacitor, the predicted ripple factor would be:

R- Ivs(2)l = (_Is)(2_-_)

Vs Vs

= PDES_.l__
V_ 3_Cs (4.26)
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In variable-frequency operation, the worst case of (4.26) occurs at low-line, giving

the following design equation for Cs.

Cs = PDES 1
V2(min) 3toR (4.27)

The switching frequency corresponding to full-load low-line operation is to be used in

(4.27).

A design equation for the output capacitor is found using similar considerations.

Co_
PDF.,S 1

V2o3toP. (4.28)

The minimum switching frequency corresponding to full-load operation is used in

(4.28).

The energy stored in Cs and (2o is next estimated. For Cs •

PD_ V_s(1
Ecs = _ CsVs2(1 + Rs) 2 =

+ R)2

2 V'_s(min) 6toR

Ecs - PDES K____(1 + R)2
co 6 R (4.29)

The turn-down ratio KTD in (4.29) is taken to be unity in the case of fixed-input-

voltage operation.

For Co:

The switching frequency ¢o is that occurring at Vs = Vs(min).

F-co - PDES 1 (1 + R)2
to 6 R (4.30)

The output-transformer design for below-resonance operation differs somewhat

from above-resonance. In the continuous-conduction mode, the transformer exciting

voltage is a squarewave at the switching frequency. For above-resonance design, the
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controllingcase occurs at full-loadand low-line.
/¢

= Vodt = xV°
VSI ns tons

The required volt-second integral is

volt-sec. (4.31)

(above resonance)

Below-resonance, the worst case occurs at light load with variable-frequency operation,

when the frequency reaches one-half the resonant frequency.

The volt-second integral in this case is

VSI = 2nVo
COons (volt-sec) (4.32)

(below resonance, variable frequency)

Note that (4.32) is given in terms of the resonant frequency COo. Fixed-frequency

below-resonance operation is described by (4.31), where _ is the switching frequency.

The transformer winding currents are related to the tank currents given previously.

For an above-resonance design, the transformer volt-second-ampere product is found

using the sinusoidal model for the tank current:

--t I
VSI .Xni _m--_-_mnsl"(2npiT_,_(rms))

= 6.98 PDES
O)min ( 4.3 3 )

where O)min is interpreted as the minimum switching frequency at _.

For the below-resonance variable-frequency design recommended on Tables 4.1

and 4.2 the volt-second-ampere product is:

VSI .Xni = 12nV° ] • (2npiTANK(rms))
COons /

=[2_Vol 2.36 1o
I O_o f

= 14.8 PDES = 12.3 PD_
00o O_max (4.34)

83



where r..0maxis interpreted as the maximum switching frequency at full-load

(O_m_x= 0.830)0).

The previous results for the variable-frequency SRC designs of Tables 4.1 and

4.2 are summarized on Table 4.6. The values for both filter capacitors have been based

on second-harmonic currents only along with the switching frequency extreme

corresponding to a full-load low-line condition. The rms capacitor currents for the

above-resonance case are estimated based on an assumed rms tank current equal to the

peak current divided by "_2-. The values reported are not considered significantly

different than those for the below-resonance case, which were found exactly using the

model of [28]. It can be seen that below-resonance operation requires approximately

twice the transformer volt-seconds when compared to an above-resonance design having

a comparable full-load switching frequency. The is a result of the lowered switching

frequency at light loads.

The fixed-frequency SRC designs of Table 4.3 (Design A, above resonance) and

Table 4.5 (Design G, below resonance) were also considered. Results pertaining to these

are summarized on Table 4.7. It should be noted that the transformer for the below-

resonance design can be made substantially smaller due to the fixed-frequency operation.
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Input
Filter
Capacitor

Output
Filter
Capacitor

Output
Transformer

Table 4.6 Variable-Frequency SRC Interfacing Components

Above Resonance, Variable Frequency
(Refer to Tables 4.1 and 4.2)

Cs = PDES 1
V2(min) 3 COminR

Ripple Current *"

ics(rms) = 0.33 PDES
V,(mm)

to 1.39

for Vs = Vs(min) to 2 Vs(min)

Stored Energy:

Ecs = PDES K2 (I+R) 2
o_ia 6 R

Co = 1
V2o 3 COmi.R

Ripple Current *"

ico(rms) = 0.481o

Stored Energy:

E_ = PDES 1 (1 +R) 2

PDES

Vs(rrdn)

f.0mia 6 R

Turns Ratio:

N = n---x-s= 1.053 Vo
np Vs(min)

Volt-Second Integral:

VSI = 7tVo
¢a_ninns

Volt-Second-Ampere Product:

VSI -Zni __.-7.0 PDES = 5.2 _P_D_
C0min f.Oo

Below Resonance Variable Frequency
(Refer to Tables 4.1 and 4.2)

Cs- PDES 1
V_sfmin) 3 (Orn=R

Ripple Current:

ics(rms) = 0.84 PDES to 1.17 --
Vs(min)

for Vs = Vs(min) to 2 Vs(min)

Stored Energy:

Ecs = PDES K_D (1 +R) 2
C0max 6 R

Co= IDES 1
V 2 3 C0miaR

Ripple Current:

ico(rms) = 0.62Io to 0.55 Io

for Vs = Vs(min) to 2Vs(min)

Stored Energy:

E_ = FDES i (I+R)___2
Ore= 6 R

Turns Ratio:

N- ns _ 1.111 Vo
np Vs(min)

Volt-Second Integral:

VSI = 2rCVo
COons

Volt-Second-Ampere Product:

PDES

Vs(mir

VSI .Eni = 12.3 PDES = 14.8 PDES
Omax too

*Estimated based on rms = peakff2-
omin = minimum full-load frequency

o0max ,,, maximum full-load frequency
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Input
Filter

Capacitor

Output
Filter

Capacitor

Output
Transform _r

Table 4.7 Fixed-Frequency SRC Interfacing Components

Above Resonance

(Design A, Table 4.3)

Ripple Current*:

ics (nns) = 1.46 PDES
Vs

Stored Energy:

Ecs = PDES ] (1 +R) 2
tO 6 R

Below Resonance

(Design G, Table 4.5)

C, = PDESA_
V2 3coR

Ripple Current:

Co = PDES l_._t__
V'2o 3coR

Ripple Current*:

i¢o (rms) = 0.48 Io

Stored Energy:

Eco = PDES! (1 +R) 2
co 6 R

Turns Ratio:

N = ns = 1.375 Vo
np Vs

Volt-Second Integral:

VSI - nVo
con s

Volt-Second-Ampere Product:

VSI • Eni = 7.0 PDES

¢.o

its (rms) _= 0.85 PDES

Vs

Stored Energy:

Ecs = PDESI(I+R)2
co 6 R

Co - PDES 1
V2o 3coR

Ripple Current:

i_, (rms) = 0.62 Io

Stored Energy:

Eco - PDES 1 (1 + R) 2
(o 6 R

Turns Ratio:

N= n, = 1.111Vo
np Vs

Volt-Second Integral:

VSI = _Vo
COns

Volt-Second-Ampere Product:

VSI • Eni = 7.4 PDES

*Estimated based on rms = p¢_
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PARALLEL-LOADED RESONANT INVERTER/CONVERTER

Several variations on the parallel-loaded resonant converter/inverter have

appeared in the literature. For use as a dc-dc converter, a variable-frequency topology

using a single resonant tank has been analyzed in [31]. Two varieties are considered in

[31] - a more conventional form using a current-sourced rectifier on its output-side,

and one having distinctly discontinuous conduction of its output rectifier. Both are

illustrated in Fig. 4.3. The standard parallel resonant converter (PRC) has a large

output inductor Lo such that the current io can be approximated as low-ripple dc. If Lo

is omitted from Fig. 4.3 while keeping Co large enough to maintain low ripple in Vo, the

result is here called the "discontinuous-rectifier-conduction" PRC, or "DRC-PRC."

Control of either of these is by means of variation of the switching frequency.

Another technique of control for the PRC is the use of two inverters and phase-

shift control [6, 11]. This permits constant-frequency operation. Figs. 4.4 and 4.5

illustrate the application of phase-shift control to a constant-frequency parallel-loaded

inverter. If the load contains a current-courced rectifier, this phase-controlled

inverter becomes a dc-dc converter [32]. The circuit of Fig. 4.4 will first be

considered as an inverter, the load being assumed to draw an approximately sinusoidal

current in response to the low-distortion sinusoidal voltage established by the inverter.

This is appropriate for application to an ac distribution system in which low harmonic

content is to be maintained. The circuit of Fig. 4.4 will also be considered with a single-

phase uncontrolled-rectifier load. This is appropriate to its application as a dc-dc

converter, or in an ac system in which no attempt is made to limit harmonic currents.

A constant-frequency PWM-controlled parallel-loaded resonant

converter/inverter also appears in the literature [33]. This paper will be briefly

reviewed.
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Varlable.Freauenc v PRC

The standard PRC is considered first, based on a suggested "good" design of [31].

The basic design information is summarized on Table 4.8, where the input voltage Vs and

output variables _ and Vo are indicated on Fig. 4.3. The design procedure given here

assumes load regulation with variable line voltage, and is based on the minimum

expected line voltage. The frequency at full load is 60 percent of the resonant frequency,

and increases throuah the resonant frequency at high line, light load or under short-

circuit conditions.
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Fig. 4.3 Parallel-loaded resonant converter. The standard PRC has a

large L o such that io has low ripple. The discontinuous-

rectifier- conduction PRC omits L o.
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Another possibility is a design based on above-resonance operation under all conditions,

including load short-circuit. It appears that similar circuit stresses will occur for this

design, although further study would be required to quantify this. A completely below-

resonance design is not possible if load short-circuit is to be considered. Table 4.8 also

presents an unusual design suggested in [31] which omits the inductor Lo of Fig. 4.3.

This DRC-PRC design has a similar peak tank current but a lower tank voltage when

compared with the standard. Table 4.8 includes estimates of peak tank voltage and

current at high line (Vs = 2Vs (ram)); these were taken from graphs found in [31].

The interface component ratings for Design A of Table 4.8, the standard PRC, are

now estimated. The input filter capacitor is found using the same considerations as those

of (4.23) - (4.27). The tank rms current is approximated as being equal to the peak

value divided by Y"2. The estimated ripple current in Table 4.9 is given for

Vs = 2Vs(min). The output filter inductor is assumed to support the ripple components

of the full-wave-rectified voltage given by Vo(t) = _V'cpsin cot. The inductor supports

the difference between Vo and its average value Vo = (2_V'¢p)/_. The expected peak-to-

peak ripple current is therefore:

io(p-p) - NVcl, (sin mt- ) dmt
_LoJ_ (4.351

NVcpsin _ - 2 NVcp.
where

91



Output
Voltage

Output
Current

Turns Ratio

Characteris

Impedance

Peak Tank
Current

Peak Tank

Voltage

Full-Load

Frequency

Tank

Energy

Table 4.8 Variable-Frequency PRC Designs

Design A
Current-Sourced Rectifier

Vo = 1.05 NVs(min)

Io = 1.55 Vs(min)
NZo

N = 0.952 Vo
V,(rr )

ic Vs2(min)
Zo = 1.63

PDES

ILp = 1.56 PDES
Vs(min)

(ILp = 2.1 PDES .)
Vdmin)

+

Vcp = 2.00 Vs(min) *
+

(Vcp ---2 Vs(min))

co> 0.6 coo

ETANK = 4.8 PDE_____SS= 2.9 PDES
coo comin

Design B
Discontinuous-Rectifier Conduction

Vo = 1.21 NVs(min)

Io = 1.20 Vs(min)
NZo

N = 0.826 Vo
V,(min)

7-,o= 1.45 V}(min)
PDES

ILp = 1.52 PDES
Vs(min)

(ILp = 2.4 PDES
Vs(min) )

Vcp= 1.21 Vs(min) *
.4-

(Vcv = 1.2 V,(min))
Ill

co > 0.6 coo

ETANK = 2.2 PDES = 1.3 PDES
coo t comin

"Evaluated at Vs = Vs(min)

+Estimated from graph at Vs = 2Vs(n'_)
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The ripple factor for the inductor current is defined as one-half the peak-to-

peak current divided by the average current. The ripple factor is therefore:

= =  ,cos,=-z,o:-°
2Io 2mLolo L n -Jc¢

= 0.641 Vo
_Lolo where

Vo = _NVcp and c_= sin -12 (4.36)

Equation (4.36) provides a means for sizing Lo to obtain a given ripple factor. The peak

stored energy in Lo is therefore:

1 ^ PDES (1 + R)2
ELO = ¼LoIoZ(1 + R)2 = 0.320

z Omin R (4.37)

The transformer volt-second-integral for the standard PRC is estimated based on

a sinusoidal voltage waveform:

VSI= ll_n(_--_)sinotdo)t= nVo
ns0_Jo nsOmi_ •

The volt-second-ampere product is therefore:

(4.38)

VSI. £ni = (n_I2Ions] = PDES 2n.
COmin (4.39)

The results of (4.35) - (4.39) are entered on Table 4.9 for Design A, a standard PRC.

The DRC-PRC of Table 4.8 (Design B) is next considered. The input capacitor is

sized using the same considerations as those of Design A; therefore, the results of (4.23)

- (4.27) are also used here.
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Inspection of the sample waveforms of [31] reveals that the output current (io)

in this PRC is approximately triangular in shape, having an average value of Io. For

such a waveform, the following relations apply:

io(peak) = 2Io and
'3o

io(rms)
_1o • (4.4 0 )

The rms ripple current in Cois estimated on the basis of (4.40).

ico(rms) -= = lo
(4.41)

The ripple factor is given by

R = Vo(peak) _ 'rio
Vo 2CoVo (4.42 )

where '_ is the time duration of the triangular current pulse. Because 't cannot exceed

half the switching period, a pessimistic estimate for Co is given by:

Co= _L
V2o4fR (4.43)

The peak stored energy in Co is therefore:

ECO = ] 2 PDES 2/_( 1 + R) 2
_-CoVo(] + R)2 =

0)mi n 8 R (4.44)

The transformer volt-second integral is conservatively estimated based on a square-

wave voltage (the actual waveform is trapezoidal):

vsi
2fn, (4.45)
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The volt-second-ampere product is found using (4.40)"

VSI "Eni = PDES _4K
0Omin

These results are also entered on Table 4.9.
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Input
Filter

Capacitor

Output
Filter

Output
Transforme

Table 4.9 Interface Components for the Variable-Frequency
PRC Designs of Table 4.8

Design A
Current-Sourced Rectifier

Cs = PDES 1
V_(min) 3O)minR

Ripple Current*:

ics(rms) = 1.4 PDES
V_(min)

Stored Energy:

Ecs - PDES K2 (1 + R) 2
¢.Omin 6 R

Lo - PDES 0,641

Stored Energy:

ELO = PDES 0.320 (1 + R) 2_
fOmin R

Design B
Discontinuous-Rectifier Conduction

Cs = PDES 1
V2s(rain) 30_minR

Ripple Current*:

ics(rms) -= 1.6 PDES
Vs(min)

Stored Energy:

Ecs = PDES K2 (I + R) 2
O)min 6 R

Co - PDES l
v2o 4fR

Stored Energy:

Eco - PDES 11;(1 + R) 2
O)min 4 R

Turns Ratio:

N = n.__.s= 0.952 Vo
np Vs(min)

Volt-Second Integral:

VSI = _Vo
(Ons

Volt-Second-Ampere Product:

VSI .Zni = 2re PDES
O)min

Turns Ratio:

N = ns = 0.826 Vo
np Vs(min)

Volt-Second Integral:

VSI < Vo
= 2fns

Volt-Second-Ampere Product:

VSI .Zni = PDES 4_
O)min

*Estimate based on rms = peakN'E; Vs = 2Vs(min)

o0min= minimum full-load switching frequency
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Phase-Controlled PRI

The phase-controlled parallel-loaded resonant inverter (PC-PRI) is shown in

Figs. 4.4 and 4.5. The intent of this topology is the production of a low-distortion

sinusoidal voltage on the load, which may actually be an ac distribution bus. Two

individual inverters are used, each of which operates at fixed frequency but variable

relative phase. The output "compensating" capacitor can be chosen to reduce the

fundamental-frequency output reactance to zero. The load is initially assumed to draw a

sinusoidal current; it is therefore not a simple rectifier, but perhaps a high-power-

factor rectifier, or of a resistive nature, such as heating and lighting. The steady-state

analysis and design procedure for Fig. 4.4 is taken from [11] and [34].

An implementation of the PC-PRI based on the Mapham inverter is also possible

[7]. This circuit performs similarly to Fig. 4.4 in most respects. It is particularly

appropriate for use with SCRs as discussed in [35], but it does expose the switches to

multiplied blocking voltages. The Mapham-inverter-based PC-PRI is not discussed

further because recent advances in the available switching devices tend to rule out the

use of SCRs.

Two suggested designs, Design C for below-resonance operation, and Design D for

above-resonance operation, are taken from [11] and summarized on Table 4.10. It is

found [11] that a compromise between output waveform distortion and tank component

energy storage must be made in choosing the switching/resonant frequency ratio. The

ratios 0.65 and 1.5 are used here for below- and above-resonance operation,

respectively.

The switching device ratings are independent of this choice, however, being only

a function of the design full-load volt-ampere rating of the inverter (SDF_.S).The

suggested design procedure provides (ideally) zero output impedance and perfect load

regulation. The load current must be limited by a current feedback loop which can
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reduce the output voltage to essentially zero. The transformer turns-ratio is set to

provide the desired rms output voltage at minimum input voltage. From [11]:

Therefore

vL(rms) = N 8Vscos O 0 < ¢ < K
9 I _ 2 "

•,r'2-x I1 ._t0_ 12V.0ol I (4.47)

N = 0.321 vL(rms)
Vs(min) (below resonance)

and

N = 0.694 vL(rms)
Vs(min) (above resonance) ( 4.4 8 )

The tank impedance is chosen such that reversal of the expected commutation

sequence of the switching devices cannot occur at or below rated load current. This

produces the design equation:

4Vs(min)
Zo <

"/"2-XNiL(rms) _o ( 4.4 9 )

Therefore

- Vs2(min)Zo = = 1.825 SDES (below resonance)

and

7-,o= = 1.945 Vs2(min)
SDES (above resonance). (4.50)

For a given switching frequency and switching/resonant frequency ratio, tOo is readily

chosen, and Zc is given by (4.50). The tank elements are then determined:

L= zo andC=--.L-
tOo 00o7-,o" (4.51)
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ThecompensatingcapacitorCcin Fig.4.5 is chosento nullthe outputimpedance;

thusCc= 1.367C for below-resonance operation. Above-resonance operation requires

a compensating inductor Lc = 0.800L in place of Co. These results are summarized on

Table 4.10. Expressions for peak tank inductor current, peak tank capacitor voltage and

peak compensating reactor voltage/current are also given on Table 4.10. Note that these

are given as functions of the design turn-down ratio KTD-Vs(max)/Vs(min). It should

also be noted that these are worst-case ratings, and do not all occur simultaneously.

Table 4.10 also gives a total stored energy which is the sum of the peak stored

energy ratings of all six tank and compensating reactances. This total was calculated for

a design turn-down ratio of 2. It can be noted that a below-resonance design generally

requires much smaller tank components than an above-resonance design.

The second-harmonic ripple current appearing on the input side of the inverter

is next estimated based on [11]. The contributions of the two unit inverters are found to

be directly additive for a control angle (_ = o, which corresponds to Vs = Vs(min). This

ripple current is greatest in the somewhat unlikely case of a purely inductive load, or

70 percent as much for a unity-power-factor load. The estimated second-harmonic

ripple current is:

i_2) =
A peak

(4.52)

for _ = o and design full-load, inductive.

Whether above or below resonance, (4.52) produces an estimate of the second-

harmonic ripple current of

li )l= 2 SoEs A l ak.
Vs(min) (4.53)
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The rms ripplecurrentin the inputcapacitorcanbe estimatedunderthe

assumptionthat all ripplecomponentsof both unit invertersare directlyadditive. This

occurswhenthe controlangle_ = o and Vs = Vs(min). If the loading is purely reactive,

then the input ripple is equal to twice the rms value of either tank current. Using the

value given on Table 4.10 for KTD = l:

isc(rms) = 2.22 SDES
Vs(min) (reactive load) (4.5 4 )

With a resistive load, this would reduce to:

isc(rms) = 1.99 SDES
Vs(min) (resistive load) ( 4.5 5 )

The input voltage ripple factor can be estimated on the basis of the second-

harmonic component by using (4.53), giving:

R = SDES 1

V2(min) COCs ( 4.5 6 )

The peak stored energy in Cs at high line then becomes:

Ecs = SDES K2 (1 + R) 2
to 2 R (4.57)

The output transformer of Fig. 4.5 processes the output volt-amperes of one of

the two unit inverters. Because of the phase-shift control, these individual transformer

voltages each differ in phase from the output voltage VL by (_, the control angle. The

control angle is related to the input voltage by:

COS (_ =
V,(min)

Vs (4.58)

k
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Therefore, the required volt-ampere rating of either transformer is

STRAN S =/2 -SDES

COS (_

= ] SDESKTD.
2

(4.59)

Because the transformer waveforms are assumed sinusoidal, the total volt-second

integral and volt-second-ampere product are readily found:

VSI - -_vL'rms' KTD
(.on s

VSl .Y.ni = _ 4"_2KTD .

and

The above expressions represent the total ratings of both transformers.

(4.52) - (4.61) are summarized on Table 4.11.

(4.60)

(4.61)

The resultsof
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Resonant

Frequency

Transformer
Turns-Ratio

Tank

Impedance

Compensating
Reactor

Peak Tank
Current

Peak Tank

Voltage

Peak Compensating
Voltage/Current

Peak Stored

Energy Rating

Total Conduction

Loss, Four
Devices +

Table 4.10 Suggested PC-PRI Design

Design C
Below-Resonance

N = ns = 0.321 vL(rms)
np Vs(min)

Zo = 1.825 V2(min)
SDES

Cc = 1.367 C

ILp = 0.786 (1 + KTD) SDES

Vs(min)

/cp = 2.205 (0.422 + KTD ) Vs(min)

VccP = 0.932 Vs(min)

ETOTAL = 17.2 SDES_. *
03

Design D
Above-Resonance

03o =03
1.5

N = ns = 0.694 vL(rms)
np Vs(min)

Zo = 1.945 V2(min)
SDES

l..,c= 0.800 L

ILp = 0.786 (1 + KTD) SDES
Vs(min)

Vcp = 1.019 (2.25 + KTD) Vs(min)

ILCP = 0.982 SDES

Vs(min)

ETOTAL = 32.9 SDES
03

i SDES I K Vsl"5(max)
P_ND=SDES2.47 (1 + KT2D)KTD _Vs(rnin)/

*Total of six component ratings, evaluated for KTD = 2

+At high line, unity pf load
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Input
Filter

Capacitor

Output
Transformt r

(Each)

Table 4.11 Interface Components for the
PC-PRI Designs of Table 4.10

Design C
Below-Resonance

Cs = SDES
V2(min) taR

Ripple Current:

ics(rms) = 2.2 SDES
V,(min)

(reactive load)

Stored Energy:

Ecs = SDF_,SK'_D (1 + R) 2
to 2 R

Turns Ratio:

N = n__= 0.321 VL(rms)
np Vs(min)

Volt-Second Integral:

VSI = 1f"2-KTDVL(rms)
tons

Volt-Second-Ampere Product:

VSI .Y_ni = SDEs 2('2- KTD
to

Design D

Above-Resonance

Cs = SDES _1_

V_s(min) _R

ics(rms) = 2.2 SDES

V,(min)

(reactive load)

Ecs - SDES K2 (1 + R) 2
co 2 R

vL(rms)
N = 0.694 Vs(min)

Volt-Second Integral:

VSI - _ KTDVL(rms)
tOn s

Volt-Second-Ampere Product:

VSI .Zni = SDES 2('2- KTD
tO
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PC-PRI with Rectifier Load

The use of a single-phase phase-controlled rectifier with the PC-PRI has been

investigated [32]. In this reference, the ac-side load current was modeled as a square

wave with variable phase relative to the ac-side voltage. Compensating reactors were

not included. It was found that a highly-distorted ac-side waveform could result under

heavy loading, which for the authors of [32] defined an upper boundary on the load

current. Although a detailed analysis of the critical value of the load current was not

given, a spot check of the data given in [32] implies that the critical current is probably

somewhat above the limit given by [11], considering only the fundamental-frequency

component of this current.

In any case, the heavy use of standard single-phase rectifiers on an ac

distribution system raises some unanswered questions. No studies seem to have been

made of the impact these rectifier-generated harmonic currents would have on the

operation of the transmission lines or other loads on the system. If the rectifier load is

limited to a suitable level, reasonably sinusoidal voltage could be maintained at the

inverter output; however, the harmonic currents will cause voltage drops on the

transmission-line series impedances, and may excite resonance involving power-

factor-correcting capacitors, if present. Because most references emphasize the low-

distortion waveforms possible with the PC-PRI, it seems that the majority of the load

rectifiers used in this system will need either passive harmonic traps or active

harmonic-reduction techniques.

The reduced-harmonic rectifiers needed for the dc loads on the PC-PRI constitute

a weight, cost and loss to be charged against this system in the same manner as additional

dc-dc converters needed by various loads must be charged against adc transmission

system. The PC-PRI is not considered practical for use with standard single-phase

rectifiers, and therefore is not considered further.
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Pulse-Width-Controlled PRI

An alternate means of obtaining constant frequency operation of the PRI is

discussed in [33], in which it is called "clamped-mode." However, the means of

regulation proposed in [33] is essentially pulse-width-modulation of the switch matrix

which drives the single parallel-loaded resonant tank, and thus will be referred to here

as PWM control, or PWM-PRI. A sample waveform is shown in Fig. 4.6. A full-bridge

inverter (not shown) drives the resonant tank of Fig. 4.6 with the pulse-width-

modulated waveform v(t). Reduction of the pulse width of v(t) reduces its fundamental-

frequency content, and thus provides a means of line regulation. The series capacitor Cc

can be chosen to give good load regulation as with the PC-PRI.

Operation with all switching devices receiving zero-current turn-off is possible

[33], but only over restricted control and load ranges. Conduction currents and losses

are not the same for all switching devices. To maintain this natural commutation, a

fairly high tank current relative to the load current is needed [33]. Therefore,

operation with two of the switching devices interrupting current is proposed.

This type of design would require disimilar snubbers for the two bridge

switching legs in a high-power application. Also, the mode boundaries would have to be

honored to avoid reversal of the expected commutation sequences of any diode-transistor

pair. Operation at a switching frequency of 1.35O)o, where O0oisthe natural resonant

frequency, seems to be suggested in [33]. However, there is no other clear design

procedure suggested.
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Fig. 4.6 Sample PWM-PRI waveform. (The bridge inverter generating v(t)

from a dc source of V s is not shown.)
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TRW Resonant Inverter

The TRW resonant inverter [15, 18, 36] appears to be a resonant adaptation of

the TRW converter discussed in a previous chapter. That converter consisted of a buck

converter providing the current source for a current-fed transformer. As pointed out

previously, operation of the buck converter with near to its critical inductance could

reduce the switching losses substantially in the current-fed-transformer switching

devices. However, the buck converter itself still must suffer switching losses,

especially at turn-off. Similarly, the resonant inverter has a current-fed transformer,

except that the dc-side inductor is resonated with an ac-side capacitor, which is parallel

loaded. The switching losses in the transformer switching devices are zero at light load,

due to zero-current turn-on and turn-off. The buck converter switch must still turn-

off near the peak resonant current. At heavy loads or load short-circuit, there are

switching losses in all switches. The output voltage is a low distortion sinusoid. The

circuit of [15, 18, 36] is shown in Fig. 4.7.

Although only limited details of the intended design and operation procedures are

available, the equivalent circuits of Fig. 4.8 can be deduced from [15]. This figure

applies to "clocked-mode" operation below rated load. (Clocked-mode operation means

that the switching frequency is fixed, each column of Fig. 4.8 taking one-half of the

switching period.) Referring to the left-hand column of Fig. 4.8, there is first a "PWM

interval" during which energy is taken from the dc source. The duration of this interval

is a control input. Next is a "free-wheeling interval" during which there is damped

resonance of L, C and load. Finally, there is a brief "zero-current interval" which

occurs at light load.

This zero-current interval disappears at heavy load (or load short-circuit) due

to the lowering of the LC ringing frequency by load damping.

The right-hand column of Fig. 4.8 is symmetric to the left, and represents the

second half-cycle of the switching frequency.
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The simulation waveforms of [15] indicale that even under normal steady-state

conditions, the PWM switch (Q3 or Q3') must interrupt nearly the peak resonant

current to cause the transition from the PWM interval to the free-wheeling interval.

Therefore, it does not seem that this approach yields any benefits in terms of switching

losses.

Indeed, the steady-state switching losses in Q3 and Q3' would seem to be much

greater than those of a well-designed buck converter of equal power. The transformer-

fed switches (Q1 and Q2) normally do receive zero-current switching, but this benefit

is lost under load-fault conditions, and therefore cannot be relied on in the design of

their snubbers. This inverter does apparently offer a well-filtered sinusoidal output.

The equivalent circuits of Fig. 4.8 suggest an alternate push-pull implementation

of the TRW resonant inverter. This is shown in Fig. 4.9. Transistors Q1 and Q2 are

driven with a 50 percent duty cycle, as in Fig. 4.7. Transistor Q3 is pulse-width-

modulated, and performs the function of both Q3 and Q3' of Fig. 4.7.

This alternate implementation also has the equivalent circuits of Fig. 4.8, but

does eliminate a switching device (Q3'), and also makes the functions of the various

parts more evident. It can be seen in Fig. 4.9 that this resonant inverter is essentially a

buck converter feeding a parallel-loaded resonant inverter. The pulsating nature of the

inductor current precludes a separate analytical treatment of the buck converter and

resonant inverter portions of the circuit, however. A full-bridge equivalent to Fig. 4.9

is readily apparent. A half-bridge equivalent is also possible, although not particularly

practical due to the use of two feed inductors.
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Fig. 4.7 TRW resonant inverter.
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Fig. 4.8 Equivalent circuits for the TRW resonant inverter (transformer

turns ratio taken to be unity).
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Fig. 4.9 Alternate implementation of the TRW resonant inverter.
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V COMPARATIVE STUDIES

DC-DC CONVERTERS

The purpose of this section is the comparative study of the dc-dc converters

discussed previously. If a dc transmission and distribution system is selected, the

source dc-dc converter will be at the heart of it. The topologies reviewed here are

ranked according to their suitability to this purpose.

Five dc-dc converters are compared based on the following assumptions: a

source-voltage turn-down ratio KTD = 2, 5 percent ripple on voltage-interfacing

capacitors and 10 percent ripple on current-interfacing inductors (at full-load current

levels). Four identical ohmic switching devices are assumed for each converter; they

are assumed to follow the model RDS = K V 2"5 .

Table 5.1 compares the five dc-dc converters in terms of conduction loss,

transformer size, energy stored in the interface components and resonant-tank-stored

energy. The buck converter is readily seen to have the lowest conduction losses and

stored energy of the alternatives. The major negative factor is the switching losses,

which include both turn-on and turn-off components. A secondary factor would be the

transformer leakage flux (neglected in this comparison), which increases the effective

turn-down ratio requirement of the design.

The above-resonance SRC is a very attractive resonant alternative. Multiplied

conduction loss is the price paid for elimination of the turn-on switching losses. This

topology is also eligible for Iossless snubbers, so turn-off losses can be greatly reduced.

The above-resonance SRC is particularly favorable due to its modest tank-stored

energy, relative to the other resonant converters.

The below-resonance SRC is an alternative when zero-current switch turn-off

is desired. There are two disadvantages: the larger lransformer required and the

substantially larger resonant tank. This topology is well proven for use with thyristors

at high power levels.
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The parellel-loaded resonant converters are also useful alternatives to the SRC,

particularly if a high turns-ratio transformer is required. In this case, both the

transformer leakage inductance and secondary distributed capacitance can be

incorporated into the resonant tank. If the resonant capacitor can be moved to a higher-

voltage transformer secondary, better dielectric utilization can be obtained.

One practical issue in the design of the PRC not considered here is that of adc

block for the transformer primary. The addition of a series capacitor is simple, but

costly due to its high current and stored energy. A duty-cycle-balancing mechanism in

the controller would seem preferable at high power levels.

The DRC-PRC shows a substantially higher interface-stored energy primarily

due to the large size of its output capacitor (due to the pulsating current). At low-

output voltages, the PRC is perferable due to its output inductor; at high output voltages

the DRC-PRC is preferable because of its output capacitor. The difference between the

PRC and DRC-PRC conduction losses is not clearly significant due to the approximation

used in determining these. (Only the peak tank current was available, the rms tank

current was estimated as 71 percent of the peak.)

The five dc-dc converter designs of Table 5.1 are all therefore considered

suitable for high power use. The choices among them depend on the conduction

loss/switching loss tradeoff for the available switching devices, as well as the possible

incorporation of unavoidable parasitics into the resonant topologies.
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DC-AC INVERTERS

Comparison of Four ToDoloaies

If an ac transmission and distribution system is selected, a dc-ac inverter will

be required at the source. This comparison assumes a two-to-one dc source voltage

variation (KTD = 2) and constant frequency ac output. Fig. 5.1 shows four possible

source-converter systems, each a compound of two converters. These four topologies

are compared based on the following assumptions: KTD = 2, 5 percent ripple on voltage-

interfacing capacitors and 10 percent ripple on current-interfacing inductors (at full-

load current levels). Four ohmic switching devices are assumed for each converter, a

total of eight. They are all assumed to follow the model RDS = K V 2.5 and have identical

area factors "K"; however, the two converters may be equiped with sets having different

RDS - Y tradeoffs.

One transformer is assumed for the first three systems of Fig. 5.1 (a, b and c);

it might be associated with either of the two converters. The last case, Fig. 5.1(d), the

PC-PRI, requires two transformers if full-bridge inverters are used.

The use of two transformers, one associated with each converter, provides some

useful options. First of all, the voltage/current levels in the second converter can be

scaled to the optimum values for the switching devices and other components. Secondly,

two transformers provide additional control over EMI by breaking possible ground loops

and attenuating the propagation of noise in the common mode.
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Table 5.1 DC-DC Converter Designs for KTD = 2

Conduction loss
PCOND

PDES

3Is(max) KV]'5(max)

6.9 Is(max)K V]'5(max)

8.6 Is(max)K V]'5(max)

8.8 Is(max)K V]'5(max)

11.5 I_(max)K V].5(max)

Transformer

VS! Ampere Produc!
VSI .Y.ni

6.3 PDES
CO

7.0 PDES
EOmin

6.3 PDES
COmin

7.2 PDES
_min

Interface-Stored

Energy

15.0 PDES
(t)

18.4 PDES
0thnax

18.4 PDES
(.Omin

21.8 PDES
Ohnin

32.0 PDES
f-Omin

Tank-Stored

Energy

8.3 PDES
(Omax

0.58 PDES

(Omin

2.9 PDES
(l)min

1.3 PDES
tOmin



The four topologies of Fig. 5.1 are compared in Table 5.2 in terms of conduction

loss, transformer volt-second-ampere product, energy stored in the interface

components shown in Fig. 5.1, and the energy stored in the resonanl tank(s). Figs.

5.1(a) and 5.1(b) show the combination of the buck converter with the SRI, operating

below and above resonance, respectively. Estimated total ohmic-device conduction losses

for each converter are shown in Table 5.2. Because the first converter may contain a

transformer, the voltage/current levels in the second converter could be quite different.

Transformer size requirements for each converter are indicated; however, only one is

essential. The interface-stored energy for the second SRI includes only its input

capacitor.

In all cases, the cost of the load rectifier-filter is not included in this

comparison. Tank-stored energy at full-load, and with the load short-circuited, is

indicated. It should be noted that tank energy in the second converter increases during a

load fault because it is driven at constant frequency. This increase is a transient lasting

until the interstage capacitor is discharged.

The third possibility, Fig. 5.1(c), uses two series-resonant converters, and thus

provides switching loss reduction in exchange for increased conduction losses. It is

evident that above-resonance operation of the SRC generally provides lower stored

energy in the resonant tank, and should therefore be selected if zero-current device

turn-off is not required.

However, it was shown in the previous chapter that the below-resonance

approach tends to limit the peak switch currents under fault conditions to substantially

lower levels than the above-resonance design. The increased stored-energy is probably

a good price to pay for this benefit. The output-side SRI should probably be operated

below resonance, therefore. The input-side converter could be either a buck converter

or a SRC operated above resonance.
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The fourth possibility considered is that of the phase-controlled PRI of Fig.

5.1(d). This inverter provides a low-distortion sinusoidal output voltage (as opposed to

the trapezoidal voltage waveform of the SRI). The price paid for this benefit is seen in

the greater stored energy _ of its resonant tanks. However, it must be pointed out

that the amount of energy indicated is not necessarily stored under any one set of

conditions, but is the sum of the worst-case ratings of all six tank elements. The fact

that both of the constituent inverters and their input filter must support the line

voltage, assumed here to be as high as twice low-line, accounts for the high predicted

conduction losses and interface-stored energy.

If no line voltage regulation were necessary, the conduction loss of the PC-PRI

would be comparable to that of the SRI. Another notable disadvantage of the PRI is the

high total transformer rating. Agin, this is due to the assumed source voltage turn-down

ratio, because each transformer is exposed to a voltage proportional to the source

voltage. A half-bridge version [34] of the PC-PRI combines the outputs of the two unit

inverters prior to a single transformer, and thus requires a transformer half as big,

but at the cost of twice the rms current in twice as many input voltage-sourcing

capacitors.
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Table 5.2 DC-AC Inverter Designs for KTD = 2

Buck/SRI,
Below Resonance

Fig. 5.1(a)

Buck/SRI,
Above Resonance

Fig. 5.1(b)

SRC/SRI,
both below

resonance

Fig. 5.1(c)

PC-PRI

mo __ m
0.65

Fig. 5.1(d)

Conduction Loss

PCOND

PDES

3Is(max)K V_-S(max)
+

4. lI's K (V's) 1"5

3Is(max)K V]'5(max)

4-

6.2 I's K (V'_)1"5

6.9Is(max)K V]'5(ma_

+

4.11 K 6"d

24.7Is(max)K V1-S(ma_

Transformer

VSt Ampere Produ¢
VSI.IEni

6.3 rDES
mBUCK

or

7.4 PDES
mAC

6.3 PDES
mBUCK

or

7.0 PDES
mAC

]) 12.3 PDES
mSRC

or

7.4 PDES
mAC

11.3 SDES
mAC

(sum of two)

Interface-Stored

Energy

15.0 tOES
(OBUCK

+

3.7 PDES
t-OAC

15.0 PDES

mBUCK

4-

3.7 PDES

mAq

18.4 PDES
mSRC

+

3.7 PDES
mAC

44.1 SDES

mAC

*Sum of the component ratings, all do not maximize under same conditions
xOccurs on a transient basis as interstage filter capacitor discharges

Tank-Stored

Energy

4.4 PDES
mAC

1.2 PDF_S
mAC

10.0 PDES
mSRC

÷

4.4 PDES
0)AC

t

17.2 SDES
mAC

Tank Stored

Energy (Load Fault)

X

9.0 PDES
mAC

X

5.4 PDES
WAC

<1o.o _PDEs
(0SRC

+

17.2 SDES
mAC

I I I t I I I I I I I I I { ! I I I f



All candidates on Table 5.2 are viable. The choice of the input stage converter is

a tradeoff between conduction losses and switching losses. Either a buck converter or an

above-resonance SRC is recommended, with a below-resonance SRC a good choice if

zero-current switching is required. The use of a SRI output inverter operating below-

resonance is recommended. The two-stage approach works better when large source-

voltage turn-down ratios are required. The PC-PRI is more costly in terms of

conduction losses and transformer size, the difference increasing with the turn-down

ratio requirement.
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Additional Topoloales

Two additional dc-ac inverter topologies might be considered; these are

combinations of pulse-width modulation with parallel-loaded resonant inverters. One is

the PWM-PRI [33] discussed previously. The other is the TRW resonant converter

[18], also discussed previously. The latter is similar to the former, except that the

TRW approach places the resonant inductor in the dc link between a buck converter and

the resonant inverter. The approach of [33] drives the resonant tank from a pulse-

width modulated switching matrix. It is possible that these approaches will be

competitive with the systems on Table 5.2 which include a buck converter. Neither of

these two is sufficiently described to allow a detailed comparison without extensive

analytical work. It does seem that both will have switching losses, but would establish a

low-distortion ac output.
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Additional Considerations

There are some additional considerations to be made in selecting the source

inverter for an ac system. These include the voltage/current waveform requirements

and surviveability of load faults (inchJding all conceivable transient conditions). In the

first case there is a choice to be made between the quasi-square-wave voltage/quasi-

sinusoidal current characterizing the SRI-based approach considered here and the low-

distortion voltage and current of the PC-PRI as considered here. The second issue

involves the thorough testing by simulation and experiment of the implications of all

possible load faults under transient conditions.

The load rectifiers required by each system also need to be considered. The SRl-

based systems have thus far assumed simple voltage-sourced rectifiers, which are the

cause of the non-sinusoidal system voltage. The PC-PRI system has been predicated on

more-complex rectifiers which produce sinusoidal input current. These will require

resonant tanks with their attendant stored energy and losses.

It seems apparent that the waveforms appearing at the loads are basically

unimportant to the loads. The effects of large voltage or current harmonics on the

distribution system is another issue. A SRI-based system having a length of high-

capacitance (low voltage-drop) cable was successfully demonstrated [11]. However, it

still seems possible that given a large enough distribution system and harmonic content

at a high enough frequency, resonance in the disbribution system could conceivably be

excited. This issue should be studied upon adoption of an SRI-based system.

The PC-PRI approach generally includes the assumption that the major load

rectifiers will have low harmonic content. This means substantially more complex

rectifiers are needed for this system, a cost which should be charged against it in any

comparison. However, if low distortion is determined to be necessary, then special

rectifiers could also be used with a SRI, a possibility which has not yet been

investigated.
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Fault survival is another area in which there is considerable lack of information.

All of the topologies considered here will reach a satisfactory steady state for any short-

or open-circuit fault. However, the fault transient should also be considered. For

example, the PC-PRI was studied during application and removal of an ac-side short-

circuit, with the result that there was a transient reversal of the expected commutation

sequence. This caused no difficulty for a 2500 VA MOSFET-based laboratory inverter;

thus it was "fault proof." The same inverter built with thyristors would have had a

commutation failure. This commutation-sequence reversal was easily dealt with at the

2500 VA level, but at higher power levels where slower switching devices would be

used, it would possibly compromise the snubber design. A simple solution has been

suggested [7] and verified by simulation. No experimental verification has been made,

however.

The SRC/SRI system of Fig. 5.1(C) has been tested experimentally [11] for fault

survival with good results. The 2500W SRI using IGTs survived repeated faults.

However, the switching conditions during the transient were not recorded. This should

be studied if the SRC/SRI is adopted for an ac distribution system.

The TRW resonant inverter is also fault-proof, provided the PWM switches can

commutate their peak currents. Both turn-on and turn-off is required, and in this area

it is comparable to the most unfavorable result that could be obtained from the SRC/SRI

or PC-PRI approaches. The TRW converter is fault-proof because it does not rely on the

resonant tank for low-loss commutation, and in this way is quite comparable to a buck

converter/resonant inverter cascade.
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Recommendations

Some recommendations are now given for each converter/inverter considered,

depending upon the choice of three possible distribution systems: dc, high-distortion ac,

or low-distortion ac. If a dc system is chosen, the best converters would be the buck or

the SRC, depending upon the conduction and switching loss characteristics of the devices

used. The SRC would have approximately two to three times the conduction loss of the

buck converter, but it could substantially reduce switching loss. Above-resonance

operation of the SRC is definitely preferable because it allows the use of a transformer

comparable to that of the buck converter, and significantly smaller tank, slower

antiparallel diodes and Iossless snubbers.

The below-resonance SRC would have marginally lower conduction loss than the

above-resonance SRc, or either PRC considered. The PRC with current-sourced

rectifier is probably best used with unusually low output-side voltage levels. The PRC

with discontinuous-rectifier conduction is probably best used with unusually high

output-side voltage levels, especially if the transformer has significant parasitic

capacitance.

The SRC/SRI combination can be effectively used if a high-distortion ac system is

chosen. This topology provides the conduction loss/switching loss tradeoff characteristic

of the resonant inverters. The output SRI should be operated below-resonance; this

provides the most effective load-fault protection for its switching devices for a given

tank size. The input SRC can be operated above-resonance to obtain the benefits listed

previously. Buck/SRI combinations are also viable, but must be questioned in light of

the widespread assumption that ac systems are justified by a need for resonant

switching. If ac is adopted for reasons other than resonant switching, then the buck/SRI

combination (as well as the PWM-PRC and TRW resonant inverter) should be

considered.
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The SRC/SRI should be studied to verify satisfactory switching conditions during

a load-fault transient, although the laboratory results thus far are encouraging.

The PC-PRI is recommended if the following are found to be bona fide system

requirements: (1) a low-distortion ac system, and (2) resonant switching. This

inverter will have a high conduction loss relative to the SRC/SRI for a turn-down ratio

of two. For higher turn-down ratios, the PC-PRI is increasingly disadvantaged, for a

turn-down ratio of unity the difference is not great.

If low-distortion ac is not a requirement, however, it should not be provided,

because of this cost of providing it. The PC-PRI has a larger set of transformers than an

above-resonance SRC or fixed-frequency SRI; however, its two transformers are

together comparable to that of a below-resonance SRC. The PWM-PRI and TRW resonant

inverter are also candidates for a low-distortion ac system if resonant switching is not a

requirement. These should be studied further if such were the case. However, if

resonant switching is not a requirement, it needs to be asked if ac is also.

The PC-PRI has been found to have reversed commutations under fault transient

conditions. A suggested remedy has been demonstrated by simulation, but not in

hardware.
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Vl, SUMMARY

There are two closely linked issues to be dealt with in designing a high-power

transmission and distribution system. One is the choice between ac and dc systems on

their inherent merits, and the other is the necessity (or lack thereof) of having

resonant switching in the power converters. An ac system provides simple voltage

scaling through the use of tr_-nsformers; a dc system is simpler to control. Issues such

as efficiency, weight or current interruption do not strongly favor either system.

Resonant switching trades switching loss for conduction loss. The available switching

devices determine whether this is a good trade or not. The adoption of an ac system

implies the use of resonant switching converters.

In light of this, ac inverters which do not assure at least some "easy"

commutations (e.g. PWM-PRI or TRW resonant inverter) are of questionable utility. If

the provision of resonant commutations is being relied on in the choice of switching

devices and snubber design, then all possible fault transients should be closely studied

for any chosen inverter topology. If commutation reversals are not a concern, then the

same switching devices could be used to build a simpler dc-dc converter which would

have lower conduction losses (albeit higher switching losses).

If a dc system is chosen, the buck converter and the SRC provide two good

alternatives. Above-resonance operation of the SRC provides a lower weight design if

the switching devices permit. The full-bridge topology is generally most favorable: It

avoids the capacitor penalty of the half-bridge and the transformer penalty of the push-

pull.

If resonant switching is considered critical, then an ac system might be

considered. The fixed-frequency below-resonance SRI provides a good ac-system source

converter if high distortion is acceptable. This will depend on whether a distribution

system free of excessive parasitic resonances can be constructed. The compatibility of
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the SRI switching devices and their snubbers with the commutations occurring during a

load fault transient should be studied in detail.

If low distortion is required, then the PC-PRI is recommended, although it will

have higher conduction losses than the SRC/SRI cascade when a large source voltage

range is required. Alternatives which provide low distortion ac without low-loss

commutation of their switches do not seem useful, but rather suggest the use of dc

instead. It must be kept in mind that a low distortion ac system will require low-

harmonic-current rectifiers at the major loads, an adilional loss and weight to be

charged against such a system. The PC-PRI has been shown experimentally to have a

potential commutation sequence reversal during a load fault, a problem that should be

addressed in any high-power design.
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